Difference between revisions of "Rotation indicatrix"
From Encyclopedia of Mathematics
(Importing text file) |
(→References: zbl link) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0826301.png | ||
+ | $#A+1 = 5 n = 0 | ||
+ | $#C+1 = 5 : ~/encyclopedia/old_files/data/R082/R.0802630 Rotation indicatrix, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''rotation diagram'' | |
− | |||
− | |||
− | |||
− | |||
− | |||
+ | One of the twelve [[Darboux surfaces|Darboux surfaces]] associated with the [[Infinitesimal deformation|infinitesimal deformation]] of a surface. It is the set of points in space described by a position vector $ \mathbf y $ | ||
+ | which are parallel to the rotation vector (instantaneous angular velocity) defined by the equation $ d \mathbf z = [ \mathbf y d \mathbf x ] $, | ||
+ | where $ \mathbf z $ | ||
+ | is the velocity vector of the infinitesimal deformation of the surface described by the position vector $ \mathbf x $. | ||
+ | The displacement indicatrix (displacement diagram) is defined in a similar manner by the displacement vector $ \mathbf s = \mathbf z - [ \mathbf y \mathbf x ] $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> N.V. Efimov, "Qualitative questions of the theory of deformations of surfaces" ''Uspekhi Mat. Nauk'' , '''3''' : 2 (1948) pp. 47–158 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.E. Cohn-Vossen, "Some problems of differential geometry in the large" , Moscow (1959) (In Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal" , '''1–4''' , Chelsea, reprint (1972) {{ZBL|0257.53001}}</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''1979''' , Publish or Perish pp. 1–5</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> N.V. Efimov, "Qualitative problems of the theory of deformation of surfaces" , Amer. Math. Soc. (1951) (Translated from Russian)</TD></TR> | ||
+ | </table> |
Latest revision as of 06:37, 9 April 2023
rotation diagram
One of the twelve Darboux surfaces associated with the infinitesimal deformation of a surface. It is the set of points in space described by a position vector $ \mathbf y $ which are parallel to the rotation vector (instantaneous angular velocity) defined by the equation $ d \mathbf z = [ \mathbf y d \mathbf x ] $, where $ \mathbf z $ is the velocity vector of the infinitesimal deformation of the surface described by the position vector $ \mathbf x $. The displacement indicatrix (displacement diagram) is defined in a similar manner by the displacement vector $ \mathbf s = \mathbf z - [ \mathbf y \mathbf x ] $.
References
[1] | N.V. Efimov, "Qualitative questions of the theory of deformations of surfaces" Uspekhi Mat. Nauk , 3 : 2 (1948) pp. 47–158 (In Russian) |
[2] | S.E. Cohn-Vossen, "Some problems of differential geometry in the large" , Moscow (1959) (In Russian) |
[a1] | G. Darboux, "Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal" , 1–4 , Chelsea, reprint (1972) Zbl 0257.53001 |
[a2] | M. Spivak, "A comprehensive introduction to differential geometry" , 1979 , Publish or Perish pp. 1–5 |
[a3] | N.V. Efimov, "Qualitative problems of the theory of deformation of surfaces" , Amer. Math. Soc. (1951) (Translated from Russian) |
How to Cite This Entry:
Rotation indicatrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotation_indicatrix&oldid=15111
Rotation indicatrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotation_indicatrix&oldid=15111
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article