Difference between revisions of "Pontryagin invariant"
(Importing text file) |
m (gather refs) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0737701.png | ||
+ | $#A+1 = 51 n = 0 | ||
+ | $#C+1 = 51 : ~/encyclopedia/old_files/data/P073/P.0703770 Pontryagin invariant | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An invariant of framed constructions of surfaces with a given framing. Let $ ( M ^ {2} , U ) $ | |
+ | be a closed orientable surface with an $ n $- | ||
+ | dimensional framing $ U $ | ||
+ | in $ S ^ {n+2} $, | ||
+ | i.e. a trivialization of the normal $ n $- | ||
+ | dimensional [[Vector bundle|vector bundle]] of the surface $ M ^ {2} $ | ||
+ | in $ S ^ {n+2} $. | ||
+ | Any element $ z \in H _ {1} ( M ^ {2} , \mathbf Z ) $ | ||
+ | can be realized by a smoothly immersed circle with self-intersections which are only double points and transversal. Let some orientation of the circle $ S ^ {1} $ | ||
+ | be fixed; let $ u _ {1} ( y) \dots u _ {n} ( y) $ | ||
+ | be orthogonal vectors from $ U $ | ||
+ | restricted to the point $ f ( y) $, | ||
+ | $ y \in C $; | ||
+ | let $ u _ {n+2} ( y) $ | ||
+ | be the tangent vector to the curve $ C = f ( S ^ {1} ) $ | ||
+ | at the point $ f ( y) $ | ||
+ | with respect to the chosen orientation of $ S ^ {1} $; | ||
+ | and let $ u _ {n+1} ( y) $ | ||
+ | be the tangent vector to $ M ^ {2} $ | ||
+ | at $ f ( y) $ | ||
+ | orthogonal to $ u _ {n+2} ( y) $ | ||
+ | and oriented such that the sequence of vectors $ u _ {1} ( y) \dots u _ {n} ( y) , u _ {n+1} ( y) , u _ {n+2} ( y) $ | ||
+ | gives the standard orientation of the sphere $ S ^ {n+2} $. | ||
+ | The mapping $ h : S ^ {1} \rightarrow \mathop{\rm SO} _ {n+2} $ | ||
+ | thus arising defines an element of the group $ \pi _ {1} ( \mathop{\rm SO} _ {n+2} ) $( | ||
+ | which is isomorphic to $ \mathbf Z _ {2} $ | ||
+ | for $ n \geq 1 $). | ||
+ | Let $ \beta = 0 $ | ||
+ | if $ h $ | ||
+ | is homotopic to zero and $ \beta = 1 $ | ||
+ | if $ h $ | ||
+ | is not homotopic to zero. Let the value of the function $ \Phi _ {0} : H _ {1} ( M ^ {2} , \mathbf Z ) \rightarrow \mathbf Z _ {2} $ | ||
+ | be equal to the sum modulo 2 of the number of double points of the curve $ C $ | ||
+ | realizing the element $ z $ | ||
+ | and the number $ \beta $ | ||
+ | defined by $ C $. | ||
+ | Thus, a given value of $ \Phi _ {0} ( z) $ | ||
+ | depends only on the homology class of $ z $, | ||
+ | and the function $ \Phi _ {0} ( z) $ | ||
+ | satisfies the following condition: | ||
− | + | $$ | |
− | + | \Phi _ {0} ( z _ {1} + z _ {2} ) = \Phi _ {0} ( z _ {1} ) + | |
− | + | \Phi _ {0} ( z _ {2} ) + \Phi ( z _ {1} , z _ {2} ) \ \mathop{\rm mod} 2 , | |
− | + | $$ | |
− | |||
− | |||
+ | where $ \Phi : H _ {1} ( M ^ {2} , \mathbf Z ) \times H _ {1} ( M ^ {2} , \mathbf Z ) \rightarrow \mathbf Z $ | ||
+ | is the intersection form of one-dimensional homologies of the surface $ M ^ {2} $. | ||
+ | The [[Arf-invariant|Arf-invariant]] of $ \Phi _ {0} $ | ||
+ | is called the Pontryagin invariant of the pair $ ( M ^ {2} , U ) $. | ||
+ | The pair $ ( M ^ {2} , U ) $ | ||
+ | admits a framed surgery to the pair $ ( S ^ {2} , U ) $ | ||
+ | if and only if the Pontryagin invariant of the pair $ ( M ^ {2} , U ) $ | ||
+ | is zero (Pontryagin's theorem). The Pontryagin invariant can be realized by an $ ( n + 2 ) $- | ||
+ | dimensional framing of the torus, $ n \geq 2 $, | ||
+ | and is the unique invariant of two-dimensional framed [[Cobordism|cobordism]]. The Pontryagin invariant defines an isomorphism $ \pi _ {n+2} ( S ^ {n} ) \approx \mathbf Z _ {2} $, | ||
+ | $ n \geq 2 $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.W. Milnor, "Toplogy from the differentiable viewpoint" , Univ. Virginia Press (1966)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J.W. Milnor, "Toplogy from the differentiable viewpoint" , Univ. Virginia Press (1966)</TD></TR> | ||
+ | </table> |
Latest revision as of 17:40, 5 April 2023
An invariant of framed constructions of surfaces with a given framing. Let $ ( M ^ {2} , U ) $
be a closed orientable surface with an $ n $-
dimensional framing $ U $
in $ S ^ {n+2} $,
i.e. a trivialization of the normal $ n $-
dimensional vector bundle of the surface $ M ^ {2} $
in $ S ^ {n+2} $.
Any element $ z \in H _ {1} ( M ^ {2} , \mathbf Z ) $
can be realized by a smoothly immersed circle with self-intersections which are only double points and transversal. Let some orientation of the circle $ S ^ {1} $
be fixed; let $ u _ {1} ( y) \dots u _ {n} ( y) $
be orthogonal vectors from $ U $
restricted to the point $ f ( y) $,
$ y \in C $;
let $ u _ {n+2} ( y) $
be the tangent vector to the curve $ C = f ( S ^ {1} ) $
at the point $ f ( y) $
with respect to the chosen orientation of $ S ^ {1} $;
and let $ u _ {n+1} ( y) $
be the tangent vector to $ M ^ {2} $
at $ f ( y) $
orthogonal to $ u _ {n+2} ( y) $
and oriented such that the sequence of vectors $ u _ {1} ( y) \dots u _ {n} ( y) , u _ {n+1} ( y) , u _ {n+2} ( y) $
gives the standard orientation of the sphere $ S ^ {n+2} $.
The mapping $ h : S ^ {1} \rightarrow \mathop{\rm SO} _ {n+2} $
thus arising defines an element of the group $ \pi _ {1} ( \mathop{\rm SO} _ {n+2} ) $(
which is isomorphic to $ \mathbf Z _ {2} $
for $ n \geq 1 $).
Let $ \beta = 0 $
if $ h $
is homotopic to zero and $ \beta = 1 $
if $ h $
is not homotopic to zero. Let the value of the function $ \Phi _ {0} : H _ {1} ( M ^ {2} , \mathbf Z ) \rightarrow \mathbf Z _ {2} $
be equal to the sum modulo 2 of the number of double points of the curve $ C $
realizing the element $ z $
and the number $ \beta $
defined by $ C $.
Thus, a given value of $ \Phi _ {0} ( z) $
depends only on the homology class of $ z $,
and the function $ \Phi _ {0} ( z) $
satisfies the following condition:
$$ \Phi _ {0} ( z _ {1} + z _ {2} ) = \Phi _ {0} ( z _ {1} ) + \Phi _ {0} ( z _ {2} ) + \Phi ( z _ {1} , z _ {2} ) \ \mathop{\rm mod} 2 , $$
where $ \Phi : H _ {1} ( M ^ {2} , \mathbf Z ) \times H _ {1} ( M ^ {2} , \mathbf Z ) \rightarrow \mathbf Z $ is the intersection form of one-dimensional homologies of the surface $ M ^ {2} $. The Arf-invariant of $ \Phi _ {0} $ is called the Pontryagin invariant of the pair $ ( M ^ {2} , U ) $. The pair $ ( M ^ {2} , U ) $ admits a framed surgery to the pair $ ( S ^ {2} , U ) $ if and only if the Pontryagin invariant of the pair $ ( M ^ {2} , U ) $ is zero (Pontryagin's theorem). The Pontryagin invariant can be realized by an $ ( n + 2 ) $- dimensional framing of the torus, $ n \geq 2 $, and is the unique invariant of two-dimensional framed cobordism. The Pontryagin invariant defines an isomorphism $ \pi _ {n+2} ( S ^ {n} ) \approx \mathbf Z _ {2} $, $ n \geq 2 $.
References
[1] | L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian) |
[a1] | R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) |
[a2] | J.W. Milnor, "Toplogy from the differentiable viewpoint" , Univ. Virginia Press (1966) |
Pontryagin invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pontryagin_invariant&oldid=15067