Namespaces
Variants
Actions

Difference between revisions of "Enneper surface"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
An algebraic [[Minimal surface|minimal surface]] covering a surface of revolution. Its parametric equation is
+
<!--
 +
e0357101.png
 +
$#A+1 = 3 n = 0
 +
$#C+1 = 3 : ~/encyclopedia/old_files/data/E035/E.0305710 Enneper surface
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035710/e0357101.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035710/e0357102.png" /></td> </tr></table>
+
An algebraic [[Minimal surface|minimal surface]] covering a [[surface of revolution]]. Its parametric equation is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035710/e0357103.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{1}{4}
 +
( u  ^ {3} - 3 u - 3 u v  ^ {2} ) ,
 +
$$
  
It was discovered by A. Enneper in 1864.
+
$$
 +
y  = 
 +
\frac{1}{4}
 +
( 3 v + 3 u  ^ {2} v - v  ^ {3} ) ,
 +
$$
  
 +
$$
 +
z  = 
 +
\frac{3}{4}
 +
( v  ^ {2} - u  ^ {2} ) .
 +
$$
  
 
+
It was discovered by A. Enneper in 1864.
====Comments====
 
 
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.C.C. Nitsche,   "Vorlesungen über Minimalflächen" , Springer (1975)</TD></TR></table>
+
* {{Ref|a1}} J.C.C. Nitsche, "Vorlesungen über Minimalflächen", Springer (1975) {{ZBL|0319.53003}}

Latest revision as of 18:19, 28 March 2023


An algebraic minimal surface covering a surface of revolution. Its parametric equation is

$$ x = \frac{1}{4} ( u ^ {3} - 3 u - 3 u v ^ {2} ) , $$

$$ y = \frac{1}{4} ( 3 v + 3 u ^ {2} v - v ^ {3} ) , $$

$$ z = \frac{3}{4} ( v ^ {2} - u ^ {2} ) . $$

It was discovered by A. Enneper in 1864.

References

  • [a1] J.C.C. Nitsche, "Vorlesungen über Minimalflächen", Springer (1975) Zbl 0319.53003
How to Cite This Entry:
Enneper surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Enneper_surface&oldid=15167
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article