Namespaces
Variants
Actions

Difference between revisions of "Lie-admissible algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: latexify)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A (non-associative) algebra (cf. [[Non-associative rings and algebras|Non-associative rings and algebras]]) whose commutator algebra becomes a [[Lie algebra|Lie algebra]]. It was first introduced by A.A. Albert in 1948 and originated from one of the defining identities for standard algebras [[#References|[a1]]]. For an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583601.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583602.png" />, the commutator algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583603.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583604.png" /> is the anti-commutative algebra with multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583605.png" /> defined on the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583606.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583607.png" /> is a Lie algebra, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583608.png" /> satisfies the Jacobi identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l0583609.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836010.png" /> is called Lie-admissible (LA). Much of the structure theory of Lie-admissible algebras has been carried out initially under additional conditions such as the flexible identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836011.png" /> or power-associativity (i.e. every element generates an associative subalgebra), or both. An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836012.png" /> is flexible Lie-admissible (FLA) if and only if it satisfies the identity
+
<!--
 +
l0583601.png
 +
$#A+1 = 261 n = 2
 +
$#C+1 = 261 : ~/encyclopedia/old_files/data/L058/L.0508360 Lie\AAhadmissible algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
if and only if the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836014.png" /> is a Lie module homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836015.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836016.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836017.png" /> under the adjoint action. For this reason, representations of Lie algebras play a main role in the structure theory of FLA algebras [[#References|[a2]]]. Lie and associative algebras are examples of FLA algebras.
+
A (non-associative) algebra (cf. [[Non-associative rings and algebras|Non-associative rings and algebras]]) whose commutator algebra becomes a [[Lie algebra|Lie algebra]]. It was first introduced by A.A. Albert in 1948 and originated from one of the defining identities for standard algebras [[#References|[a1]]]. For an algebra  $  \mathfrak A $
 +
over a field  $  F $,
 +
the commutator algebra  $  \mathfrak A  ^ {-} $
 +
of $  \mathfrak A $
 +
is the anti-commutative algebra with multiplication  $  [ x , y ] = xy - yx $
 +
defined on the vector space  $  \mathfrak A $.  
 +
If  $  \mathfrak A  ^ {-} $
 +
is a Lie algebra, i.e. $  \mathfrak A  ^ {-} $
 +
satisfies the Jacobi identity  $  [[ x , y ] , z ] + [[ y , z ] , x ] + [[ z , x ] , y ] = 0 $,
 +
then  $  \mathfrak A $
 +
is called Lie-admissible (LA). Much of the structure theory of Lie-admissible algebras has been carried out initially under additional conditions such as the [[flexible identity]]  $  ( xy ) x = y ( yx ) $
 +
or [[power associativity]] (i.e. every element generates an associative subalgebra), or both. An algebra  $  \mathfrak A $
 +
is flexible Lie-admissible (FLA) if and only if it satisfies the identity
  
Beginning with Albert's problem of classifying all power-associative FLA algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836018.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836019.png" /> semi-simple [[#References|[a1]]], a common theme of the structure theory in various mathematical, physical and geometrical settings has been to focus on the case of a prescribed Lie algebra structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836020.png" />. Albert's problem was first solved in 1962 for finite-dimensional algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836021.png" /> over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836022.png" /> of characteristic 0, and such algebras turned out to be Lie algebras [[#References|[a3]]]. This result was extended to the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836023.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836024.png" /> is a classical Lie algebra or a generalized Witt algebra [[#References|[a2]]], [[#References|[a4]]] (cf. [[Witt algebra|Witt algebra]]). In 1981, these algebras were classified without the assumption of power-associativity [[#References|[a5]]], [[#References|[a6]]]: When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836025.png" /> is simple over the base field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836026.png" /> as above, the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836027.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836028.png" /> is given by
+
$$ \tag{a1 }
 +
[ x , yz ] = y [ x , z] + [ x , y ] z
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
if and only if the mapping  $  x \otimes y \rightarrow xy $
 +
is a Lie module homomorphism of  $  \mathfrak A \otimes \mathfrak A $
 +
to  $  \mathfrak A $
 +
for  $  \mathfrak A  ^ {-} $
 +
under the adjoint action. For this reason, representations of Lie algebras play a main role in the structure theory of FLA algebras [[#References|[a2]]]. Lie and associative algebras are examples of FLA algebras.
  
for a fixed scalar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836030.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836031.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836032.png" /> not of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836033.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836034.png" />), and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836035.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836036.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836037.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836039.png" /> is defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836040.png" /> by
+
Beginning with Albert's problem of classifying all power-associative FLA algebras  $  \mathfrak A $
 +
with  $  \mathfrak A  ^ {-} $
 +
semi-simple [[#References|[a1]]], a common theme of the structure theory in various mathematical, physical and geometrical settings has been to focus on the case of a prescribed Lie algebra structure on  $  \mathfrak A  ^ {-} $.  
 +
Albert's problem was first solved in 1962 for finite-dimensional algebras  $  \mathfrak A $
 +
over an algebraically closed field  $  F $
 +
of characteristic 0, and such algebras turned out to be Lie algebras [[#References|[a3]]]. This result was extended to the case of $  \mathop{\rm char}  F \neq 0 $
 +
when  $  \mathfrak A  ^ {-} $
 +
is a classical Lie algebra or a generalized Witt algebra [[#References|[a2]]], [[#References|[a4]]] (cf. [[Witt algebra|Witt algebra]]). In 1981, these algebras were classified without the assumption of power-associativity [[#References|[a5]]], [[#References|[a6]]]: When  $  \mathfrak A  ^ {-} $
 +
is simple over the base field  $  F $
 +
as above, the multiplication  $  \star $
 +
in  $  \mathfrak A $
 +
is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836041.png" /></td> </tr></table>
+
$$ \tag{a2 }
 +
x \star y  =
 +
\frac{1}{2}
 +
[ x , y ] + \beta x \# y
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836042.png" /> denotes the matrix product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836045.png" /> is the identity matrix. Thus, the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836046.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836047.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836048.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836049.png" />) can not be power-associative. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836050.png" /> is semi-simple, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836051.png" /> is a direct sum of simple algebras given by (a2). The classification was extended to the case where the solvable radical (cf. [[Radical of rings and algebras|Radical of rings and algebras]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836052.png" /> is a direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836053.png" /> or Abelian [[#References|[a2]]]. In 1984, the algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836054.png" /> in Albert's problem were determined in the absence of flexibility [[#References|[a7]]]: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836055.png" /> is semi-simple with decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836056.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836057.png" />), where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836058.png" /> are simple ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836059.png" />, then the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836060.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836061.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836062.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836064.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836065.png" /> are linear functionals on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836066.png" /> and satisfy certain conditions prescribed in terms of graphs having 2, 3 or 4 vertices.
+
for a fixed scalar  $  \beta \in F $,
 +
where $  \beta = 0 $
 +
for  $  \mathfrak A  ^ {-} $
 +
not of type  $  A _ {n} $(
 +
$  n \geq  2 $),
 +
and for  $  \mathfrak A  ^ {-} $
 +
of type  $  A _ {n} $(
 +
$  n \geq  2 $),
 +
$  \beta \neq 0 $
 +
and  $  \# $
 +
is defined on  $  \mathfrak A  ^ {-} = \mathfrak s \mathfrak l ( n+ 1, F  ) $
 +
by
 +
 
 +
$$
 +
x \# y  =  xy + yx -
 +
\frac{2}{n+}
 +
1 (  \mathop{\rm Tr}  xy) I ,
 +
$$
 +
 
 +
where  $  xy $
 +
denotes the matrix product of $  x $
 +
and $  y $
 +
and $  I $
 +
is the identity matrix. Thus, the algebra $  \mathfrak A $
 +
with $  \mathfrak A  ^ {-} $
 +
of type $  A _ {n} $(
 +
$  n \geq  2 $)  
 +
can not be power-associative. If $  \mathfrak A  ^ {-} $
 +
is semi-simple, $  \mathfrak A $
 +
is a direct sum of simple algebras given by (a2). The classification was extended to the case where the solvable radical (cf. [[Radical of rings and algebras|Radical of rings and algebras]]) of $  \mathfrak A  ^ {-} $
 +
is a direct summand of $  \mathfrak A  ^ {-} $
 +
or Abelian [[#References|[a2]]]. In 1984, the algebras $  \mathfrak A $
 +
in Albert's problem were determined in the absence of flexibility [[#References|[a7]]]: If $  \mathfrak A  ^ {-} $
 +
is semi-simple with decomposition $  \mathfrak A  ^ {-} = \mathfrak S _ {1} + \dots + \mathfrak S _ {n} $(
 +
$  n \geq  2 $),  
 +
where the $  \mathfrak S _ {i} $
 +
are simple ideals of $  \mathfrak A  ^ {-} $,  
 +
then the multiplication $  \star $
 +
in $  \mathfrak A $
 +
has the form $  x \star y = [ x , y ] / 2 + \tau _ {ij} ( y) x + \tau _ {ji} ( x) y $
 +
for $  x \in \mathfrak S _ {i} $,  
 +
$  y \in \mathfrak S _ {j} $,  
 +
where the $  \tau _ {ij} $
 +
are linear functionals on the $  \mathfrak S _ {j} $
 +
and satisfy certain conditions prescribed in terms of graphs having 2, 3 or 4 vertices.
  
 
R.M. Santilli in 1978 obtained LA algebras (brackets) from a modified form of Hamilton's equations with external terms which represent a general non-self-adjoint Newtonian system in classical mechanics [[#References|[a8]]]. Such a form leads to a time evolution
 
R.M. Santilli in 1978 obtained LA algebras (brackets) from a modified form of Hamilton's equations with external terms which represent a general non-self-adjoint Newtonian system in classical mechanics [[#References|[a8]]]. Such a form leads to a time evolution
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836067.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
$$ \tag{a3 }
 +
 
 +
\frac{dA ( a) }{dt}
 +
 
 +
= \sum _ {i , j = 1 } ^ { 2n }
 +
 
 +
\frac{\partial  A }{\partial  a  ^ {i} }
 +
 
 +
S  ^ {ij} ( t , a )
 +
 
 +
\frac{\partial  H }{\partial  a  ^ {j} }
 +
 
 +
\equiv  ( A , H ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836068.png" /> is a local chart in a manifold of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836070.png" /> is a [[Hamiltonian|Hamiltonian]], and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836071.png" /> a non-singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836072.png" />-tensor in a region with decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836073.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836075.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836076.png" />). The symmetric tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836077.png" /> represents the presence of non-self-adjoint forces in the system. The commutator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836078.png" /> is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836079.png" /> in terms of the classical [[Poisson brackets|Poisson brackets]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836080.png" /> and thus, by (a3), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836081.png" /> defines a Lie-admissible product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836082.png" /> on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836083.png" />-space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836084.png" />-functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836085.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836086.png" /> denotes the field of real numbers. The bracket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836087.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836088.png" />, is called a fundamental Lie-admissible bracket, or tensor. More generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836089.png" /> for a skew-symmetric non-singular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836090.png" />-tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836091.png" /> in a region, Lie-admissibility of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836092.png" /> or the bracket (a3) is described by partial differential equations of first order in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836093.png" />. The general solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836094.png" />, called the general cosymplectic tensor, to these equations exists under certain conditions and plays a central role in Birkhoffian mechanics (a generalization of Hamiltonian mechanics) [[#References|[a9]]]. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836095.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836096.png" />, is called a general Lie-admissible bracket, or tensor. A quantum mechanical version of this leads to a time-development equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836097.png" /> in an associative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836098.png" /> of operators in a physical system, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l05836099.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360100.png" /> are in general non-Hermitian non-singular operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360101.png" /> which represent non-self-adjoint forces [[#References|[a8]]]. From this equation, regarded as a generalization of the Heisenberg equation, one obtains an LA algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360102.png" />, called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360104.png" />-mutation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360105.png" />, with product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360106.png" /> defined on an associative algebra with identity for fixed invertible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360107.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360108.png" /> is not in general flexible or power-associative. In fact, any one of these conditions is equivalent to the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360109.png" /> for some invertible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360110.png" /> in the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360111.png" /> [[#References|[a10]]]. A special case of the above approach has been investigated by Santilli in 1967 [[#References|[a11]]], where he first introduced LA algebras into physics: For real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360112.png" />, the bracket (a3) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360113.png" /> and the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360114.png" /> were considered for a generalization of Hamiltonian and quantum mechanics. According to Santilli [[#References|[a8]]], the aim of this Lie-admissible approach is to make a transition from contemporary physical models based on Lie algebras or their graded-supersymmetric extensions to the general Lie-admissible models, which transition essentially permits the treatment of particles as being extended and therefore admits additional contact, non-potential and non-Hamiltonian interactions.
+
where $  a = ( a  ^ {1} \dots a  ^ {2n} ) $
 +
is a local chart in a manifold of dimension $  2n $,  
 +
$  H $
 +
is a [[Hamiltonian|Hamiltonian]], and $  ( S  ^ {ij} ) $
 +
a non-singular $  C  ^  \infty  $-
 +
tensor in a region with decomposition $  S  ^ {ij} = \omega  ^ {ij} + T  ^ {ij} $
 +
for  $  ( \omega  ^ {ij} ) = ( {} _ {-} 1  ^ {0}  {} _ {0}  ^ {1} ) $
 +
and $  T  ^ {ij} = T  ^ {ji} $(
 +
$  i , j = 1 , \dots , 2n $).  
 +
The symmetric tensor $  ( T  ^ {ij} ) $
 +
represents the presence of non-self-adjoint forces in the system. The commutator $  ( A , H ) - ( H , A ) $
 +
is given by $  2 [ A , H ] $
 +
in terms of the classical [[Poisson brackets|Poisson brackets]] $  [  , ] $
 +
and thus, by (a3), $  ( S  ^ {ij} ) $
 +
defines a Lie-admissible product $  (  , ) $
 +
on the $  \mathbf R $-
 +
space of $  C  ^  \infty  $-
 +
functions in $  a  ^ {1} \dots a  ^ {2n} $,  
 +
where $  \mathbf R $
 +
denotes the field of real numbers. The bracket $  (  , ) $,  
 +
or $  ( S  ^ {ij} ) $,  
 +
is called a fundamental Lie-admissible bracket, or tensor. More generally, if $  S  ^ {ij} = \Omega  ^ {ij} + T  ^ {ij} $
 +
for a skew-symmetric non-singular $  C  ^  \infty  $-
 +
tensor $  ( \Omega  ^ {ij} ) $
 +
in a region, Lie-admissibility of $  ( S  ^ {ij} ) $
 +
or the bracket (a3) is described by partial differential equations of first order in $  \Omega  ^ {ij} $.  
 +
The general solution $  ( \Omega  ^ {ij} ) $,  
 +
called the general cosymplectic tensor, to these equations exists under certain conditions and plays a central role in Birkhoffian mechanics (a generalization of Hamiltonian mechanics) [[#References|[a9]]]. In this case $  (  , ) $,  
 +
or $  ( S  ^ {ij} ) $,  
 +
is called a general Lie-admissible bracket, or tensor. A quantum mechanical version of this leads to a time-development equation $  idA / dt = ARH - HSA $
 +
in an associative algebra $  \mathfrak A $
 +
of operators in a physical system, where $  R $
 +
and $  S $
 +
are in general non-Hermitian non-singular operators in $  \mathfrak A $
 +
which represent non-self-adjoint forces [[#References|[a8]]]. From this equation, regarded as a generalization of the Heisenberg equation, one obtains an LA algebra $  \mathfrak A ( r , s ) $,  
 +
called the $  ( r , s ) $-
 +
mutation of $  \mathfrak A $,  
 +
with product $  x \star y = xry - ysx $
 +
defined on an associative algebra with identity for fixed invertible $  r , s \in \mathfrak A $.  
 +
$  \mathfrak A ( r , s) $
 +
is not in general flexible or power-associative. In fact, any one of these conditions is equivalent to the relation $  r = as $
 +
for some invertible $  a $
 +
in the centre of $  \mathfrak A $[[#References|[a10]]]. A special case of the above approach has been investigated by Santilli in 1967 [[#References|[a11]]], where he first introduced LA algebras into physics: For real numbers $  \lambda , \mu $,  
 +
the bracket (a3) with $  ( S  ^ {ij} ) = ( {} _ {\mu 1 }  ^ {0}  {} _ {0} ^ {\lambda 1 } ) $
 +
and the algebra $  \mathfrak A ( \lambda , \mu ) $
 +
were considered for a generalization of Hamiltonian and quantum mechanics. According to Santilli [[#References|[a8]]], the aim of this Lie-admissible approach is to make a transition from contemporary physical models based on Lie algebras or their graded-supersymmetric extensions to the general Lie-admissible models, which transition essentially permits the treatment of particles as being extended and therefore admits additional contact, non-potential and non-Hamiltonian interactions.
  
From a different point of view, S. Okubo [[#References|[a12]]] in 1978 used FLA algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360115.png" /> to generalize the framework of the consistent canonical quantization procedure based on the associative law. A quantization is called consistent if the Hamiltonian equation of motion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360116.png" /> can reproduce the original Lagrange equation. Such a quantization can be done in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360117.png" /> based only on the canonical commutation relation and the identity (a1). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360118.png" /> consists of operators in a physical system, then using (a1) it can be shown that the Heisenberg equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360119.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360120.png" /> is essentially the most general time-development equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360121.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360122.png" /> is the commutator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360123.png" />. If the Hamiltonian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360124.png" /> is power-associative in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360125.png" />, then the time-development operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360126.png" /> is well defined for the Schrödinger formulation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360127.png" /> with state vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360128.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360129.png" />. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360130.png" /> is weakly associative in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360131.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360132.png" /> for all positive integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360133.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360134.png" />, then the solution to the Heisenberg equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360135.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360136.png" />, as in the usual quantum mechanics. An example of such an algebra is the real pseudo-octonion algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360137.png" />, which has the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360138.png" /> defined on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360139.png" />-space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360140.png" /> Hermitian matrices of trace 0, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360141.png" /> [[#References|[a2]]]. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360142.png" /> is an FLA [[Division algebra|division algebra]], with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360143.png" /> isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360144.png" />, and has some relevance to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360145.png" /> particle physics. It also plays an important role in the structure theory of real division algebras [[#References|[a2]]].
+
From a different point of view, S. Okubo [[#References|[a12]]] in 1978 used FLA algebras $  \mathfrak A $
 +
to generalize the framework of the consistent canonical quantization procedure based on the associative law. A quantization is called consistent if the Hamiltonian equation of motion $  dQ / dt = i [ H , Q ] $
 +
can reproduce the original Lagrange equation. Such a quantization can be done in $  \mathfrak A $
 +
based only on the canonical commutation relation and the identity (a1). If $  \mathfrak A $
 +
consists of operators in a physical system, then using (a1) it can be shown that the Heisenberg equation $  dx / dt = i [ H , x ] $
 +
for some $  iH \in \mathfrak A $
 +
is essentially the most general time-development equation in $  \mathfrak A $,  
 +
where $  [ H, x ] = Hx - xH $
 +
is the commutator in $  \mathfrak A $.  
 +
If the Hamiltonian $  H $
 +
is power-associative in $  \mathfrak A $,  
 +
then the time-development operator $  \mathop{\rm exp} ( itH ) $
 +
is well defined for the Schrödinger formulation in $  \mathfrak A $
 +
with state vector $  \psi $
 +
satisfying  $  id \psi / dt = H \psi $.  
 +
If, in addition, $  H $
 +
is weakly associative in $  \mathfrak A $,  
 +
i.e. $  ( H  ^ {m} x ) H  ^ {n} = H  ^ {m} ( x H  ^ {n} ) $
 +
for all positive integers $  m , n $
 +
and $  x \in \mathfrak A $,  
 +
then the solution to the Heisenberg equation in $  \mathfrak A $
 +
has the form $  x = e  ^ {itH} x ( 0) e  ^ {-} itH $,  
 +
as in the usual quantum mechanics. An example of such an algebra is the real pseudo-octonion algebra $  P _ {8} $,  
 +
which has the multiplication $  x \star y = \mu xy + ( 1 - \mu ) yx - 1/3 (  \mathop{\rm Tr}  xy ) I $
 +
defined on the $  \mathbf R $-
 +
space of $  ( 3 \times 3 ) $
 +
Hermitian matrices of trace 0, where $  \mu = 1/2 \pm  ( \sqrt 3 / 6 ) i $[[#References|[a2]]]. $  P _ {8} $
 +
is an FLA [[Division algebra|division algebra]], with $  P _ {8}  ^ {-} $
 +
isomorphic to $  \mathfrak s \mathfrak u ( 3) $,  
 +
and has some relevance to $  \mathop{\rm SU} ( 3) $
 +
particle physics. It also plays an important role in the structure theory of real division algebras [[#References|[a2]]].
  
An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360146.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360147.png" /> is called Mal'tsev-admissible (MA) if its commutator algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360148.png" /> becomes a [[Mal'tsev algebra|Mal'tsev algebra]], i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360149.png" /> satisfies the Mal'tsev identity
+
An algebra $  \mathfrak A $
 +
over a field $  F $
 +
is called Mal'tsev-admissible (MA) if its commutator algebra $  \mathfrak A  ^ {-} $
 +
becomes a [[Mal'tsev algebra|Mal'tsev algebra]], i.e., $  \mathfrak A  ^ {-} $
 +
satisfies the Mal'tsev identity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360150.png" /></td> </tr></table>
+
$$
 +
[[ x , y ] , [ x , z ]] =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360151.png" /></td> </tr></table>
+
$$
 +
= \
 +
[[[ x , y ] , z ] , x] + [[[ y , z ] , x ] , x] + [[[ z, x], x] , y ].
 +
$$
  
It arises as a natural generalization of LA algebras as well as Mal'tsev algebras, and its structure theory is parallel to that of LA algebras [[#References|[a2]]]. Alternative algebras (cf. [[Alternative rings and algebras|Alternative rings and algebras]]) are examples of flexible Mal'tsev-admissible (FMA) algebras, and octonion algebras (also called Cayley–Dickson algebras, cf. [[Cayley–Dickson algebra|Cayley–Dickson algebra]]) are FMA but not LA. For an octonion algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360152.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360153.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360154.png" /> with standard involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360155.png" />, one obtains an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360156.png" /> with multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360157.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360158.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360159.png" />, called a para-octonion algebra, is a simple FMA algebra without identity and so not alternative [[#References|[a2]]]. An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360160.png" /> (not necessarily with identity) is called a composition algebra if there exists a non-degenerate quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360161.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360162.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360163.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360164.png" />. Any finite-dimensional flexible composition algebra (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360165.png" />) is an MA algebra of dimension 1, 2, 4, or 8, and for dimension 8 octonion, pseudo-octonion and para-octonion algebras are the only such algebras [[#References|[a13]]]. For an MA algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360166.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360167.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360168.png" /> is the adjoint mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360169.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360170.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360171.png" /> is a Lie subalgebra of the derivation algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360172.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360173.png" /> (cf. also [[Derivation in a ring|Derivation in a ring]]), and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360174.png" /> is FMA, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360175.png" /> is also a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360176.png" /> and the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360177.png" /> is a Lie module homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360178.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360179.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360180.png" /> [[#References|[a2]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360181.png" /> be finite dimensional over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360182.png" /> of characteristic 0. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360183.png" /> is semi-simple, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360184.png" />. Because of this, virtually all results about FLA algebras can be extended to FMA algebras [[#References|[a2]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360185.png" /> is FMA with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360186.png" /> central simple, non-Lie over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360187.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360188.png" /> is a Mal'tsev algebra isomorphic to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360189.png" />-dimensional simple Mal'tsev algebra obtained from an octonion algebra (cf. [[Mal'tsev algebra|Mal'tsev algebra]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360190.png" /> is semi-simple and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360191.png" /> is algebraically closed, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360192.png" /> is the direct sum of simple algebras given by (a2) and simple Mal'tsev algebras. Some of the work on MA algebras was motivated by algebraic formalisms in physics aimed at generalizing both the Lie-admissible and the octonionic approach in quantum mechanics.
+
It arises as a natural generalization of LA algebras as well as Mal'tsev algebras, and its structure theory is parallel to that of LA algebras [[#References|[a2]]]. Alternative algebras (cf. [[Alternative rings and algebras|Alternative rings and algebras]]) are examples of flexible Mal'tsev-admissible (FMA) algebras, and octonion algebras (also called Cayley–Dickson algebras, cf. [[Cayley–Dickson algebra|Cayley–Dickson algebra]]) are FMA but not LA. For an octonion algebra $  \mathfrak A $
 +
over a field $  F $
 +
of characteristic $  \neq 2 $
 +
with standard involution $  x \rightarrow \overline{x}\; $,  
 +
one obtains an algebra $  \mathfrak A _  \star  $
 +
with multiplication $  x \star y = \overline{x}\; \overline{y}\; $
 +
defined on $  \mathfrak A $.  
 +
The algebra $  \mathfrak A _  \star  $,  
 +
called a para-octonion algebra, is a simple FMA algebra without identity and so not alternative [[#References|[a2]]]. An algebra $  \mathfrak A $(
 +
not necessarily with identity) is called a composition algebra if there exists a non-degenerate quadratic form $  q $
 +
on $  \mathfrak A $
 +
such that $  q ( xy ) = q ( x) q ( y) $
 +
for all $  x , y \in \mathfrak A $.  
 +
Any finite-dimensional flexible composition algebra ( $  \mathop{\rm char}  F \neq 2 $)  
 +
is an MA algebra of dimension 1, 2, 4, or 8, and for dimension 8 octonion, pseudo-octonion and para-octonion algebras are the only such algebras [[#References|[a13]]]. For an MA algebra $  \mathfrak A $,  
 +
let $  d ( x , y ) = \mathop{\rm ad}  [ x , y ] + [  \mathop{\rm ad}  x ,  \mathop{\rm ad}  y ] $,  
 +
where $  \mathop{\rm ad}  x $
 +
is the adjoint mapping $  \mathfrak A \rightarrow \mathfrak A $
 +
given by $  y \rightarrow [ x , y] $.  
 +
Then $  d ( \mathfrak A , \mathfrak A ) $
 +
is a Lie subalgebra of the derivation algebra $  \mathop{\rm Der}  \mathfrak A  ^ {-} $
 +
of $  \mathfrak A  ^ {-} $(
 +
cf. also [[Derivation in a ring|Derivation in a ring]]), and if $  \mathfrak A $
 +
is FMA, then $  d ( \mathfrak A , \mathfrak A ) $
 +
is also a subalgebra of $  \mathop{\rm Der}  \mathfrak A $
 +
and the mapping $  x \otimes y \rightarrow xy $
 +
is a Lie module homomorphism of $  \mathfrak A \otimes \mathfrak A $
 +
to $  \mathfrak A $
 +
for $  d ( \mathfrak A , \mathfrak A ) $[[#References|[a2]]]. Let $  \mathfrak A $
 +
be finite dimensional over a field $  F $
 +
of characteristic 0. If $  \mathfrak A  ^ {-} $
 +
is semi-simple, then so is $  d ( \mathfrak A , \mathfrak A ) $.  
 +
Because of this, virtually all results about FLA algebras can be extended to FMA algebras [[#References|[a2]]]. If $  \mathfrak A $
 +
is FMA with $  \mathfrak A  ^ {-} $
 +
central simple, non-Lie over $  F $,  
 +
then $  \mathfrak A $
 +
is a Mal'tsev algebra isomorphic to a $  7 $-
 +
dimensional simple Mal'tsev algebra obtained from an octonion algebra (cf. [[Mal'tsev algebra|Mal'tsev algebra]]). If $  \mathfrak A  ^ {-} $
 +
is semi-simple and $  F $
 +
is algebraically closed, then $  \mathfrak A $
 +
is the direct sum of simple algebras given by (a2) and simple Mal'tsev algebras. Some of the work on MA algebras was motivated by algebraic formalisms in physics aimed at generalizing both the Lie-admissible and the octonionic approach in quantum mechanics.
  
LA and MA algebras also arise from differential geometry on Lie groups and reductive homogeneous spaces. For a (connected) Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360193.png" /> with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360194.png" />, the determination of all (left) invariant affine connections (cf. [[Affine connection|Affine connection]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360195.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360196.png" /> reduces to the problem of classifying all algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360197.png" /> with a multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360198.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360199.png" />; the relation is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360200.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360201.png" />. In this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360202.png" /> is called the connection algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360203.png" />. Those connections which are torsion free correspond to the LA algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360204.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360205.png" /> (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360206.png" />) [[#References|[a14]]]. If, in addition, the [[Curvature tensor|curvature tensor]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360207.png" /> is zero (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360208.png" /> is flat), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360209.png" /> satisfies the left-symmetric identity
+
LA and MA algebras also arise from differential geometry on Lie groups and reductive homogeneous spaces. For a (connected) Lie group $  G $
 +
with Lie algebra $  \mathfrak g $,  
 +
the determination of all (left) invariant affine connections (cf. [[Affine connection|Affine connection]]) $  \nabla $
 +
on $  G $
 +
reduces to the problem of classifying all algebras $  ( \mathfrak g , \star ) $
 +
with a multiplication $  \star $
 +
defined on $  \mathfrak g $;  
 +
the relation is given by $  \nabla _ {X} Y = X \star Y $
 +
for $  X , Y \in \mathfrak g $.  
 +
In this case, $  ( \mathfrak g , \star ) $
 +
is called the connection algebra of $  \nabla $.  
 +
Those connections which are torsion free correspond to the LA algebras $  ( \mathfrak g , \star ) $
 +
with $  ( \mathfrak g , \star )  ^ {-} = \mathfrak g $(
 +
i.e., $  X \star Y - Y \star X = [ X , Y ] $)  
 +
[[#References|[a14]]]. If, in addition, the [[Curvature tensor|curvature tensor]] of $  \nabla $
 +
is zero (i.e., $  \nabla $
 +
is flat), then $  ( \mathfrak g , \star ) $
 +
satisfies the left-symmetric identity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360210.png" /></td> </tr></table>
+
$$
 +
X \star ( Y \star Z ) - ( X \star
 +
Y ) \star Z  = Y \star ( X \star Z ) - ( Y \star X ) \star Z .
 +
$$
  
The classification of left-invariant affine structures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360211.png" /> reduces to that of left-symmetric algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360212.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360213.png" /> [[#References|[a15]]]. Other geometrical properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360214.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360215.png" />, such as geodesic, holonomy, pseudo-Riemannian structure, and infinitesimal generator, can be described in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360216.png" />. For example, if every vector field in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360217.png" /> is an infinitesimal generator for a one-parameter group of affine diffeomorphisms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360218.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360219.png" />, then the connection algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360220.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360221.png" /> is FLA [[#References|[a14]]].
+
The classification of left-invariant affine structures on $  G $
 +
reduces to that of left-symmetric algebras $  ( \mathfrak g , \star ) $
 +
with $  ( \mathfrak g , \star )  ^ {-} = \mathfrak g $[[#References|[a15]]]. Other geometrical properties of $  \nabla $
 +
on $  G $,  
 +
such as geodesic, holonomy, pseudo-Riemannian structure, and infinitesimal generator, can be described in terms of $  ( \mathfrak g , \star ) $.  
 +
For example, if every vector field in $  \mathfrak g $
 +
is an infinitesimal generator for a one-parameter group of affine diffeomorphisms on $  G $
 +
for $  \nabla $,  
 +
then the connection algebra $  ( \mathfrak g , \star ) $
 +
of $  \nabla $
 +
is FLA [[#References|[a14]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360222.png" /> be a reductive [[Homogeneous space|homogeneous space]] with a fixed decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360223.png" /> (direct sum), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360224.png" /> is the Lie algebra of a closed Lie subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360225.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360226.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360227.png" /> is a subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360228.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360229.png" /> (or, equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360230.png" />). There is a one-one correspondence between the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360231.png" />-invariant affine connections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360232.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360233.png" /> and the set of algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360234.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360235.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360236.png" />, the automorphism group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360237.png" />. The projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360238.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360239.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360240.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360241.png" /> converts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360242.png" /> into an anti-commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360243.png" />, called a reductive algebra. More generally, an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360244.png" /> is called reductive-admissible if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360245.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360246.png" /> for some reductive decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360247.png" /> of a Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360248.png" />. Those connections on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360249.png" /> which are torsion free correspond to the reductive-admissible algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360250.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360251.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360252.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360253.png" />. Any MA algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360254.png" /> is reductive-admissible with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360255.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360256.png" /> is a Lie algebra with multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360257.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360258.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360259.png" />. Geometrical properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360260.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360261.png" /> such as those above are described in terms of the connection algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360262.png" />. For a detailed account of these, see [[#References|[a15]]]–[[#References|[a17]]].
+
Let $  G / H $
 +
be a reductive [[Homogeneous space|homogeneous space]] with a fixed decomposition $  \mathfrak g = \mathfrak m + \mathfrak h $(
 +
direct sum), where $  \mathfrak h $
 +
is the Lie algebra of a closed Lie subgroup $  H $
 +
of $  G $
 +
and $  \mathfrak m $
 +
is a subspace of $  \mathfrak g $
 +
such that $  [ \mathfrak h , \mathfrak m ] \subset  \mathfrak m $(
 +
or, equivalently, $  (  \mathop{\rm Ad}  H ) \mathfrak m \subset  \mathfrak m $).  
 +
There is a one-one correspondence between the set of $  G $-
 +
invariant affine connections $  \nabla $
 +
on $  G / H $
 +
and the set of algebras $  ( \mathfrak m , \star ) $
 +
with $  \mathop{\rm ad}  \mathfrak h \subset  \mathop{\rm Der}  ( \mathfrak m , \star ) $,  
 +
i.e., $  \mathop{\rm Ad}  H \subset  \mathop{\rm Aut} ( \mathfrak m , \star ) $,  
 +
the automorphism group of $  ( \mathfrak m , \star ) $.  
 +
The projection $  X Y $
 +
of $  [ X , Y ] $
 +
onto $  \mathfrak m $
 +
for $  X , Y \in \mathfrak m $
 +
converts $  \mathfrak m $
 +
into an anti-commutative algebra $  ( \mathfrak m , X Y ) $,  
 +
called a reductive algebra. More generally, an algebra $  \mathfrak A $
 +
is called reductive-admissible if $  \mathfrak A  ^ {-} $
 +
is isomorphic to $  ( \mathfrak m , X Y ) $
 +
for some reductive decomposition $  \mathfrak g = \mathfrak m + \mathfrak h $
 +
of a Lie algebra $  \mathfrak g $.  
 +
Those connections on $  G / H $
 +
which are torsion free correspond to the reductive-admissible algebras $  ( \mathfrak m , \star ) $
 +
such that $  ( \mathfrak m , \star ) = ( \mathfrak m , X Y ) $
 +
and $  \mathop{\rm ad}  \mathfrak h \subset  \mathop{\rm Der}  ( \mathfrak m , \star ) $
 +
or $  \mathop{\rm Ad}  H \subset  \mathop{\rm Aut}  ( \mathfrak m , \star ) $.  
 +
Any MA algebra $  \mathfrak A $
 +
is reductive-admissible with $  \mathfrak g = \mathfrak A  ^ {-} \oplus d ( \mathfrak A , \mathfrak A ) $,  
 +
where $  \mathfrak g $
 +
is a Lie algebra with multiplication $  [ X + D , Y + D  ^  \prime  ] = [ X , Y ] + D ( Y) - D  ^  \prime  ( X) + d ( X , Y ) + [ D , D  ^  \prime  ] $
 +
for $  X , Y \in \mathfrak A $
 +
and $  D , D  ^  \prime  \in d ( \mathfrak A , \mathfrak A ) $.  
 +
Geometrical properties of $  \nabla $
 +
on $  G / H $
 +
such as those above are described in terms of the connection algebra $  ( \mathfrak m , \star ) $.  
 +
For a detailed account of these, see [[#References|[a15]]]–[[#References|[a17]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Albert,  "Power associative rings"  ''Trans. Amer. Math. Soc.'' , '''64'''  (1948)  pp. 552–593</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.C. Myung,  "Malcev-admissible algebras" , Birkhäuser  (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P.J. Laufer,  M.L. Tomber,  "Some Lie admissible algebras"  ''Canad. J. Math.'' , '''14'''  (1962)  pp. 287–292</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H.C. Myung,  "Some classes of flexible Lie-admissible algebras"  ''Trans. Amer. Math. Soc.'' , '''167'''  (1972)  pp. 79–88</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  S. Okubo,  H.C. Myung,  "Adjoint operators in Lie algebras and the classification of simple flexible Lie-admissible algebras"  ''Trans. Amer. Math. Soc.'' , '''264'''  (1981)  pp. 459–472</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  G.M. Benkart,  J.M. Osborn,  "Flexible Lie-admissible algebras"  ''J. of Algebra'' , '''71'''  (1981)  pp. 11–31</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  G.M. Benkart,  "Power-associative Lie-admissible algebras"  ''J. of Algebra'' , '''90'''  (1984)  pp. 37–58</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  R.M. Santilli,  "Lie-admissible approach to the hadronic structure" , '''II''' , Hadronic Press  (1982)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  R.M. Santilli,  "Foundations of theoretical mechanics" , '''II''' , Springer  (1982)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  J.M. Osborn,  "The Lie-admissible mutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360263.png" /> of an associative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058360/l058360264.png" />"  ''Hadronic J.'' , '''5'''  (1982)  pp. 904–930</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  R.M. Santilli,  "Imbedding of Lie algebras in nonassociative structures"  ''Nuovo Cimento A (10)'' , '''51'''  (1967)  pp. 570–576</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  S. Okubo,  "Non-associative quantum mechanics via flexible Lie-admissible algebras"  R. Casabuoni (ed.)  G. Domokos (ed.)  S. Koveski-Domokos (ed.) , ''Proc. 3-rd Workshop Current Problems in High Energy Physics'' , Johns Hopkins Univ. Press  (1979)  pp. 103–120</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  S. Okubo,  "Classification of flexible composition algebras, I, II"  ''Hadronic J.'' , '''5'''  (1982)  pp. 1564–1612</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  H.C. Myung,  A.A. Sagle,  "Lie-admissible algebras and affine connections on Lie groups"  S.A. Park (ed.) , ''Proc. Workshops in Pure Math.'' , '''7. Algebraic Structures''' , Pure Math. Res. Assoc.  (1988)  pp. 115–148</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  H. Kim,  "Complete left-invariant affine structures on nilpotent Lie groups"  ''J. Differential Geom.'' , '''24'''  (1986)  pp. 373–394</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  A.A. Sagle,  "Invariant Lagrangian mechanics, connections, and non-associative algebras"  ''Algebras, Groups Geom.'' , '''3'''  (1986)  pp. 199–263</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  H.C. Myung,  A.A. Sagle,  "On the construction of reductive Lie-admissible algebras"  ''J. Pure Appl. Algebra'' , '''53'''  (1988)  pp. 75–91</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.A. Albert,  "Power associative rings"  ''Trans. Amer. Math. Soc.'' , '''64'''  (1948)  pp. 552–593</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.C. Myung,  "Malcev-admissible algebras" , Birkhäuser  (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P.J. Laufer,  M.L. Tomber,  "Some Lie admissible algebras"  ''Canad. J. Math.'' , '''14'''  (1962)  pp. 287–292</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H.C. Myung,  "Some classes of flexible Lie-admissible algebras"  ''Trans. Amer. Math. Soc.'' , '''167'''  (1972)  pp. 79–88</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  S. Okubo,  H.C. Myung,  "Adjoint operators in Lie algebras and the classification of simple flexible Lie-admissible algebras"  ''Trans. Amer. Math. Soc.'' , '''264'''  (1981)  pp. 459–472</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  G.M. Benkart,  J.M. Osborn,  "Flexible Lie-admissible algebras"  ''J. of Algebra'' , '''71'''  (1981)  pp. 11–31</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  G.M. Benkart,  "Power-associative Lie-admissible algebras"  ''J. of Algebra'' , '''90'''  (1984)  pp. 37–58</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  R.M. Santilli,  "Lie-admissible approach to the hadronic structure" , '''II''' , Hadronic Press  (1982)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  R.M. Santilli,  "Foundations of theoretical mechanics" , '''II''' , Springer  (1982)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  J.M. Osborn,  "The Lie-admissible mutation $A(r,s)$ of an associative algebra $A$"  ''Hadronic J.'' , '''5'''  (1982)  pp. 904–930</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  R.M. Santilli,  "Imbedding of Lie algebras in nonassociative structures"  ''Nuovo Cimento A (10)'' , '''51'''  (1967)  pp. 570–576</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  S. Okubo,  "Non-associative quantum mechanics via flexible Lie-admissible algebras"  R. Casabuoni (ed.)  G. Domokos (ed.)  S. Koveski-Domokos (ed.) , ''Proc. 3-rd Workshop Current Problems in High Energy Physics'' , Johns Hopkins Univ. Press  (1979)  pp. 103–120</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  S. Okubo,  "Classification of flexible composition algebras, I, II"  ''Hadronic J.'' , '''5'''  (1982)  pp. 1564–1612</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  H.C. Myung,  A.A. Sagle,  "Lie-admissible algebras and affine connections on Lie groups"  S.A. Park (ed.) , ''Proc. Workshops in Pure Math.'' , '''7. Algebraic Structures''' , Pure Math. Res. Assoc.  (1988)  pp. 115–148</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  H. Kim,  "Complete left-invariant affine structures on nilpotent Lie groups"  ''J. Differential Geom.'' , '''24'''  (1986)  pp. 373–394</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  A.A. Sagle,  "Invariant Lagrangian mechanics, connections, and non-associative algebras"  ''Algebras, Groups Geom.'' , '''3'''  (1986)  pp. 199–263</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  H.C. Myung,  A.A. Sagle,  "On the construction of reductive Lie-admissible algebras"  ''J. Pure Appl. Algebra'' , '''53'''  (1988)  pp. 75–91</TD></TR></table>

Latest revision as of 19:10, 26 March 2023


A (non-associative) algebra (cf. Non-associative rings and algebras) whose commutator algebra becomes a Lie algebra. It was first introduced by A.A. Albert in 1948 and originated from one of the defining identities for standard algebras [a1]. For an algebra $ \mathfrak A $ over a field $ F $, the commutator algebra $ \mathfrak A ^ {-} $ of $ \mathfrak A $ is the anti-commutative algebra with multiplication $ [ x , y ] = xy - yx $ defined on the vector space $ \mathfrak A $. If $ \mathfrak A ^ {-} $ is a Lie algebra, i.e. $ \mathfrak A ^ {-} $ satisfies the Jacobi identity $ [[ x , y ] , z ] + [[ y , z ] , x ] + [[ z , x ] , y ] = 0 $, then $ \mathfrak A $ is called Lie-admissible (LA). Much of the structure theory of Lie-admissible algebras has been carried out initially under additional conditions such as the flexible identity $ ( xy ) x = y ( yx ) $ or power associativity (i.e. every element generates an associative subalgebra), or both. An algebra $ \mathfrak A $ is flexible Lie-admissible (FLA) if and only if it satisfies the identity

$$ \tag{a1 } [ x , yz ] = y [ x , z] + [ x , y ] z $$

if and only if the mapping $ x \otimes y \rightarrow xy $ is a Lie module homomorphism of $ \mathfrak A \otimes \mathfrak A $ to $ \mathfrak A $ for $ \mathfrak A ^ {-} $ under the adjoint action. For this reason, representations of Lie algebras play a main role in the structure theory of FLA algebras [a2]. Lie and associative algebras are examples of FLA algebras.

Beginning with Albert's problem of classifying all power-associative FLA algebras $ \mathfrak A $ with $ \mathfrak A ^ {-} $ semi-simple [a1], a common theme of the structure theory in various mathematical, physical and geometrical settings has been to focus on the case of a prescribed Lie algebra structure on $ \mathfrak A ^ {-} $. Albert's problem was first solved in 1962 for finite-dimensional algebras $ \mathfrak A $ over an algebraically closed field $ F $ of characteristic 0, and such algebras turned out to be Lie algebras [a3]. This result was extended to the case of $ \mathop{\rm char} F \neq 0 $ when $ \mathfrak A ^ {-} $ is a classical Lie algebra or a generalized Witt algebra [a2], [a4] (cf. Witt algebra). In 1981, these algebras were classified without the assumption of power-associativity [a5], [a6]: When $ \mathfrak A ^ {-} $ is simple over the base field $ F $ as above, the multiplication $ \star $ in $ \mathfrak A $ is given by

$$ \tag{a2 } x \star y = \frac{1}{2} [ x , y ] + \beta x \# y $$

for a fixed scalar $ \beta \in F $, where $ \beta = 0 $ for $ \mathfrak A ^ {-} $ not of type $ A _ {n} $( $ n \geq 2 $), and for $ \mathfrak A ^ {-} $ of type $ A _ {n} $( $ n \geq 2 $), $ \beta \neq 0 $ and $ \# $ is defined on $ \mathfrak A ^ {-} = \mathfrak s \mathfrak l ( n+ 1, F ) $ by

$$ x \# y = xy + yx - \frac{2}{n+} 1 ( \mathop{\rm Tr} xy) I , $$

where $ xy $ denotes the matrix product of $ x $ and $ y $ and $ I $ is the identity matrix. Thus, the algebra $ \mathfrak A $ with $ \mathfrak A ^ {-} $ of type $ A _ {n} $( $ n \geq 2 $) can not be power-associative. If $ \mathfrak A ^ {-} $ is semi-simple, $ \mathfrak A $ is a direct sum of simple algebras given by (a2). The classification was extended to the case where the solvable radical (cf. Radical of rings and algebras) of $ \mathfrak A ^ {-} $ is a direct summand of $ \mathfrak A ^ {-} $ or Abelian [a2]. In 1984, the algebras $ \mathfrak A $ in Albert's problem were determined in the absence of flexibility [a7]: If $ \mathfrak A ^ {-} $ is semi-simple with decomposition $ \mathfrak A ^ {-} = \mathfrak S _ {1} + \dots + \mathfrak S _ {n} $( $ n \geq 2 $), where the $ \mathfrak S _ {i} $ are simple ideals of $ \mathfrak A ^ {-} $, then the multiplication $ \star $ in $ \mathfrak A $ has the form $ x \star y = [ x , y ] / 2 + \tau _ {ij} ( y) x + \tau _ {ji} ( x) y $ for $ x \in \mathfrak S _ {i} $, $ y \in \mathfrak S _ {j} $, where the $ \tau _ {ij} $ are linear functionals on the $ \mathfrak S _ {j} $ and satisfy certain conditions prescribed in terms of graphs having 2, 3 or 4 vertices.

R.M. Santilli in 1978 obtained LA algebras (brackets) from a modified form of Hamilton's equations with external terms which represent a general non-self-adjoint Newtonian system in classical mechanics [a8]. Such a form leads to a time evolution

$$ \tag{a3 } \frac{dA ( a) }{dt} = \sum _ {i , j = 1 } ^ { 2n } \frac{\partial A }{\partial a ^ {i} } S ^ {ij} ( t , a ) \frac{\partial H }{\partial a ^ {j} } \equiv ( A , H ), $$

where $ a = ( a ^ {1} \dots a ^ {2n} ) $ is a local chart in a manifold of dimension $ 2n $, $ H $ is a Hamiltonian, and $ ( S ^ {ij} ) $ a non-singular $ C ^ \infty $- tensor in a region with decomposition $ S ^ {ij} = \omega ^ {ij} + T ^ {ij} $ for $ ( \omega ^ {ij} ) = ( {} _ {-} 1 ^ {0} {} _ {0} ^ {1} ) $ and $ T ^ {ij} = T ^ {ji} $( $ i , j = 1 , \dots , 2n $). The symmetric tensor $ ( T ^ {ij} ) $ represents the presence of non-self-adjoint forces in the system. The commutator $ ( A , H ) - ( H , A ) $ is given by $ 2 [ A , H ] $ in terms of the classical Poisson brackets $ [ , ] $ and thus, by (a3), $ ( S ^ {ij} ) $ defines a Lie-admissible product $ ( , ) $ on the $ \mathbf R $- space of $ C ^ \infty $- functions in $ a ^ {1} \dots a ^ {2n} $, where $ \mathbf R $ denotes the field of real numbers. The bracket $ ( , ) $, or $ ( S ^ {ij} ) $, is called a fundamental Lie-admissible bracket, or tensor. More generally, if $ S ^ {ij} = \Omega ^ {ij} + T ^ {ij} $ for a skew-symmetric non-singular $ C ^ \infty $- tensor $ ( \Omega ^ {ij} ) $ in a region, Lie-admissibility of $ ( S ^ {ij} ) $ or the bracket (a3) is described by partial differential equations of first order in $ \Omega ^ {ij} $. The general solution $ ( \Omega ^ {ij} ) $, called the general cosymplectic tensor, to these equations exists under certain conditions and plays a central role in Birkhoffian mechanics (a generalization of Hamiltonian mechanics) [a9]. In this case $ ( , ) $, or $ ( S ^ {ij} ) $, is called a general Lie-admissible bracket, or tensor. A quantum mechanical version of this leads to a time-development equation $ idA / dt = ARH - HSA $ in an associative algebra $ \mathfrak A $ of operators in a physical system, where $ R $ and $ S $ are in general non-Hermitian non-singular operators in $ \mathfrak A $ which represent non-self-adjoint forces [a8]. From this equation, regarded as a generalization of the Heisenberg equation, one obtains an LA algebra $ \mathfrak A ( r , s ) $, called the $ ( r , s ) $- mutation of $ \mathfrak A $, with product $ x \star y = xry - ysx $ defined on an associative algebra with identity for fixed invertible $ r , s \in \mathfrak A $. $ \mathfrak A ( r , s) $ is not in general flexible or power-associative. In fact, any one of these conditions is equivalent to the relation $ r = as $ for some invertible $ a $ in the centre of $ \mathfrak A $[a10]. A special case of the above approach has been investigated by Santilli in 1967 [a11], where he first introduced LA algebras into physics: For real numbers $ \lambda , \mu $, the bracket (a3) with $ ( S ^ {ij} ) = ( {} _ {\mu 1 } ^ {0} {} _ {0} ^ {\lambda 1 } ) $ and the algebra $ \mathfrak A ( \lambda , \mu ) $ were considered for a generalization of Hamiltonian and quantum mechanics. According to Santilli [a8], the aim of this Lie-admissible approach is to make a transition from contemporary physical models based on Lie algebras or their graded-supersymmetric extensions to the general Lie-admissible models, which transition essentially permits the treatment of particles as being extended and therefore admits additional contact, non-potential and non-Hamiltonian interactions.

From a different point of view, S. Okubo [a12] in 1978 used FLA algebras $ \mathfrak A $ to generalize the framework of the consistent canonical quantization procedure based on the associative law. A quantization is called consistent if the Hamiltonian equation of motion $ dQ / dt = i [ H , Q ] $ can reproduce the original Lagrange equation. Such a quantization can be done in $ \mathfrak A $ based only on the canonical commutation relation and the identity (a1). If $ \mathfrak A $ consists of operators in a physical system, then using (a1) it can be shown that the Heisenberg equation $ dx / dt = i [ H , x ] $ for some $ iH \in \mathfrak A $ is essentially the most general time-development equation in $ \mathfrak A $, where $ [ H, x ] = Hx - xH $ is the commutator in $ \mathfrak A $. If the Hamiltonian $ H $ is power-associative in $ \mathfrak A $, then the time-development operator $ \mathop{\rm exp} ( itH ) $ is well defined for the Schrödinger formulation in $ \mathfrak A $ with state vector $ \psi $ satisfying $ id \psi / dt = H \psi $. If, in addition, $ H $ is weakly associative in $ \mathfrak A $, i.e. $ ( H ^ {m} x ) H ^ {n} = H ^ {m} ( x H ^ {n} ) $ for all positive integers $ m , n $ and $ x \in \mathfrak A $, then the solution to the Heisenberg equation in $ \mathfrak A $ has the form $ x = e ^ {itH} x ( 0) e ^ {-} itH $, as in the usual quantum mechanics. An example of such an algebra is the real pseudo-octonion algebra $ P _ {8} $, which has the multiplication $ x \star y = \mu xy + ( 1 - \mu ) yx - 1/3 ( \mathop{\rm Tr} xy ) I $ defined on the $ \mathbf R $- space of $ ( 3 \times 3 ) $ Hermitian matrices of trace 0, where $ \mu = 1/2 \pm ( \sqrt 3 / 6 ) i $[a2]. $ P _ {8} $ is an FLA division algebra, with $ P _ {8} ^ {-} $ isomorphic to $ \mathfrak s \mathfrak u ( 3) $, and has some relevance to $ \mathop{\rm SU} ( 3) $ particle physics. It also plays an important role in the structure theory of real division algebras [a2].

An algebra $ \mathfrak A $ over a field $ F $ is called Mal'tsev-admissible (MA) if its commutator algebra $ \mathfrak A ^ {-} $ becomes a Mal'tsev algebra, i.e., $ \mathfrak A ^ {-} $ satisfies the Mal'tsev identity

$$ [[ x , y ] , [ x , z ]] = $$

$$ = \ [[[ x , y ] , z ] , x] + [[[ y , z ] , x ] , x] + [[[ z, x], x] , y ]. $$

It arises as a natural generalization of LA algebras as well as Mal'tsev algebras, and its structure theory is parallel to that of LA algebras [a2]. Alternative algebras (cf. Alternative rings and algebras) are examples of flexible Mal'tsev-admissible (FMA) algebras, and octonion algebras (also called Cayley–Dickson algebras, cf. Cayley–Dickson algebra) are FMA but not LA. For an octonion algebra $ \mathfrak A $ over a field $ F $ of characteristic $ \neq 2 $ with standard involution $ x \rightarrow \overline{x}\; $, one obtains an algebra $ \mathfrak A _ \star $ with multiplication $ x \star y = \overline{x}\; \overline{y}\; $ defined on $ \mathfrak A $. The algebra $ \mathfrak A _ \star $, called a para-octonion algebra, is a simple FMA algebra without identity and so not alternative [a2]. An algebra $ \mathfrak A $( not necessarily with identity) is called a composition algebra if there exists a non-degenerate quadratic form $ q $ on $ \mathfrak A $ such that $ q ( xy ) = q ( x) q ( y) $ for all $ x , y \in \mathfrak A $. Any finite-dimensional flexible composition algebra ( $ \mathop{\rm char} F \neq 2 $) is an MA algebra of dimension 1, 2, 4, or 8, and for dimension 8 octonion, pseudo-octonion and para-octonion algebras are the only such algebras [a13]. For an MA algebra $ \mathfrak A $, let $ d ( x , y ) = \mathop{\rm ad} [ x , y ] + [ \mathop{\rm ad} x , \mathop{\rm ad} y ] $, where $ \mathop{\rm ad} x $ is the adjoint mapping $ \mathfrak A \rightarrow \mathfrak A $ given by $ y \rightarrow [ x , y] $. Then $ d ( \mathfrak A , \mathfrak A ) $ is a Lie subalgebra of the derivation algebra $ \mathop{\rm Der} \mathfrak A ^ {-} $ of $ \mathfrak A ^ {-} $( cf. also Derivation in a ring), and if $ \mathfrak A $ is FMA, then $ d ( \mathfrak A , \mathfrak A ) $ is also a subalgebra of $ \mathop{\rm Der} \mathfrak A $ and the mapping $ x \otimes y \rightarrow xy $ is a Lie module homomorphism of $ \mathfrak A \otimes \mathfrak A $ to $ \mathfrak A $ for $ d ( \mathfrak A , \mathfrak A ) $[a2]. Let $ \mathfrak A $ be finite dimensional over a field $ F $ of characteristic 0. If $ \mathfrak A ^ {-} $ is semi-simple, then so is $ d ( \mathfrak A , \mathfrak A ) $. Because of this, virtually all results about FLA algebras can be extended to FMA algebras [a2]. If $ \mathfrak A $ is FMA with $ \mathfrak A ^ {-} $ central simple, non-Lie over $ F $, then $ \mathfrak A $ is a Mal'tsev algebra isomorphic to a $ 7 $- dimensional simple Mal'tsev algebra obtained from an octonion algebra (cf. Mal'tsev algebra). If $ \mathfrak A ^ {-} $ is semi-simple and $ F $ is algebraically closed, then $ \mathfrak A $ is the direct sum of simple algebras given by (a2) and simple Mal'tsev algebras. Some of the work on MA algebras was motivated by algebraic formalisms in physics aimed at generalizing both the Lie-admissible and the octonionic approach in quantum mechanics.

LA and MA algebras also arise from differential geometry on Lie groups and reductive homogeneous spaces. For a (connected) Lie group $ G $ with Lie algebra $ \mathfrak g $, the determination of all (left) invariant affine connections (cf. Affine connection) $ \nabla $ on $ G $ reduces to the problem of classifying all algebras $ ( \mathfrak g , \star ) $ with a multiplication $ \star $ defined on $ \mathfrak g $; the relation is given by $ \nabla _ {X} Y = X \star Y $ for $ X , Y \in \mathfrak g $. In this case, $ ( \mathfrak g , \star ) $ is called the connection algebra of $ \nabla $. Those connections which are torsion free correspond to the LA algebras $ ( \mathfrak g , \star ) $ with $ ( \mathfrak g , \star ) ^ {-} = \mathfrak g $( i.e., $ X \star Y - Y \star X = [ X , Y ] $) [a14]. If, in addition, the curvature tensor of $ \nabla $ is zero (i.e., $ \nabla $ is flat), then $ ( \mathfrak g , \star ) $ satisfies the left-symmetric identity

$$ X \star ( Y \star Z ) - ( X \star Y ) \star Z = Y \star ( X \star Z ) - ( Y \star X ) \star Z . $$

The classification of left-invariant affine structures on $ G $ reduces to that of left-symmetric algebras $ ( \mathfrak g , \star ) $ with $ ( \mathfrak g , \star ) ^ {-} = \mathfrak g $[a15]. Other geometrical properties of $ \nabla $ on $ G $, such as geodesic, holonomy, pseudo-Riemannian structure, and infinitesimal generator, can be described in terms of $ ( \mathfrak g , \star ) $. For example, if every vector field in $ \mathfrak g $ is an infinitesimal generator for a one-parameter group of affine diffeomorphisms on $ G $ for $ \nabla $, then the connection algebra $ ( \mathfrak g , \star ) $ of $ \nabla $ is FLA [a14].

Let $ G / H $ be a reductive homogeneous space with a fixed decomposition $ \mathfrak g = \mathfrak m + \mathfrak h $( direct sum), where $ \mathfrak h $ is the Lie algebra of a closed Lie subgroup $ H $ of $ G $ and $ \mathfrak m $ is a subspace of $ \mathfrak g $ such that $ [ \mathfrak h , \mathfrak m ] \subset \mathfrak m $( or, equivalently, $ ( \mathop{\rm Ad} H ) \mathfrak m \subset \mathfrak m $). There is a one-one correspondence between the set of $ G $- invariant affine connections $ \nabla $ on $ G / H $ and the set of algebras $ ( \mathfrak m , \star ) $ with $ \mathop{\rm ad} \mathfrak h \subset \mathop{\rm Der} ( \mathfrak m , \star ) $, i.e., $ \mathop{\rm Ad} H \subset \mathop{\rm Aut} ( \mathfrak m , \star ) $, the automorphism group of $ ( \mathfrak m , \star ) $. The projection $ X Y $ of $ [ X , Y ] $ onto $ \mathfrak m $ for $ X , Y \in \mathfrak m $ converts $ \mathfrak m $ into an anti-commutative algebra $ ( \mathfrak m , X Y ) $, called a reductive algebra. More generally, an algebra $ \mathfrak A $ is called reductive-admissible if $ \mathfrak A ^ {-} $ is isomorphic to $ ( \mathfrak m , X Y ) $ for some reductive decomposition $ \mathfrak g = \mathfrak m + \mathfrak h $ of a Lie algebra $ \mathfrak g $. Those connections on $ G / H $ which are torsion free correspond to the reductive-admissible algebras $ ( \mathfrak m , \star ) $ such that $ ( \mathfrak m , \star ) = ( \mathfrak m , X Y ) $ and $ \mathop{\rm ad} \mathfrak h \subset \mathop{\rm Der} ( \mathfrak m , \star ) $ or $ \mathop{\rm Ad} H \subset \mathop{\rm Aut} ( \mathfrak m , \star ) $. Any MA algebra $ \mathfrak A $ is reductive-admissible with $ \mathfrak g = \mathfrak A ^ {-} \oplus d ( \mathfrak A , \mathfrak A ) $, where $ \mathfrak g $ is a Lie algebra with multiplication $ [ X + D , Y + D ^ \prime ] = [ X , Y ] + D ( Y) - D ^ \prime ( X) + d ( X , Y ) + [ D , D ^ \prime ] $ for $ X , Y \in \mathfrak A $ and $ D , D ^ \prime \in d ( \mathfrak A , \mathfrak A ) $. Geometrical properties of $ \nabla $ on $ G / H $ such as those above are described in terms of the connection algebra $ ( \mathfrak m , \star ) $. For a detailed account of these, see [a15][a17].

References

[a1] A.A. Albert, "Power associative rings" Trans. Amer. Math. Soc. , 64 (1948) pp. 552–593
[a2] H.C. Myung, "Malcev-admissible algebras" , Birkhäuser (1986)
[a3] P.J. Laufer, M.L. Tomber, "Some Lie admissible algebras" Canad. J. Math. , 14 (1962) pp. 287–292
[a4] H.C. Myung, "Some classes of flexible Lie-admissible algebras" Trans. Amer. Math. Soc. , 167 (1972) pp. 79–88
[a5] S. Okubo, H.C. Myung, "Adjoint operators in Lie algebras and the classification of simple flexible Lie-admissible algebras" Trans. Amer. Math. Soc. , 264 (1981) pp. 459–472
[a6] G.M. Benkart, J.M. Osborn, "Flexible Lie-admissible algebras" J. of Algebra , 71 (1981) pp. 11–31
[a7] G.M. Benkart, "Power-associative Lie-admissible algebras" J. of Algebra , 90 (1984) pp. 37–58
[a8] R.M. Santilli, "Lie-admissible approach to the hadronic structure" , II , Hadronic Press (1982)
[a9] R.M. Santilli, "Foundations of theoretical mechanics" , II , Springer (1982)
[a10] J.M. Osborn, "The Lie-admissible mutation $A(r,s)$ of an associative algebra $A$" Hadronic J. , 5 (1982) pp. 904–930
[a11] R.M. Santilli, "Imbedding of Lie algebras in nonassociative structures" Nuovo Cimento A (10) , 51 (1967) pp. 570–576
[a12] S. Okubo, "Non-associative quantum mechanics via flexible Lie-admissible algebras" R. Casabuoni (ed.) G. Domokos (ed.) S. Koveski-Domokos (ed.) , Proc. 3-rd Workshop Current Problems in High Energy Physics , Johns Hopkins Univ. Press (1979) pp. 103–120
[a13] S. Okubo, "Classification of flexible composition algebras, I, II" Hadronic J. , 5 (1982) pp. 1564–1612
[a14] H.C. Myung, A.A. Sagle, "Lie-admissible algebras and affine connections on Lie groups" S.A. Park (ed.) , Proc. Workshops in Pure Math. , 7. Algebraic Structures , Pure Math. Res. Assoc. (1988) pp. 115–148
[a15] H. Kim, "Complete left-invariant affine structures on nilpotent Lie groups" J. Differential Geom. , 24 (1986) pp. 373–394
[a16] A.A. Sagle, "Invariant Lagrangian mechanics, connections, and non-associative algebras" Algebras, Groups Geom. , 3 (1986) pp. 199–263
[a17] H.C. Myung, A.A. Sagle, "On the construction of reductive Lie-admissible algebras" J. Pure Appl. Algebra , 53 (1988) pp. 75–91
How to Cite This Entry:
Lie-admissible algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie-admissible_algebra&oldid=14803
This article was adapted from an original article by H.C. Myung (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article