Power associativity
From Encyclopedia of Mathematics
A binary operation on a set X is power associative if each element x generates an associative magma: that is, exponentiation x \mapsto x^n is well-defined for positive integers n, and x^{m+n} = x^m \star x^n. The set of powers of x thus forms a semi-group.
See also: Algebra with associative powers.
References
- Bruck, Richard Hubert A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. 20 Springer (1958) Zbl 0081.01704
How to Cite This Entry:
Power associativity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Power_associativity&oldid=37214
Power associativity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Power_associativity&oldid=37214