Namespaces
Variants
Actions

Difference between revisions of "Dunford-Pettis property"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The property of a [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102401.png" /> that every continuous operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102402.png" /> sending bounded sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102403.png" /> into relatively weakly compact sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102404.png" /> (called weakly compact operators) also transforms weakly compact sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102405.png" /> into norm-compact sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102406.png" /> (such operators are called completely continuous; cf. also [[Completely-continuous operator|Completely-continuous operator]]). In short, it requires that weakly compact operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102407.png" /> are completely continuous.
+
<!--
 +
d1102401.png
 +
$#A+1 = 68 n = 6
 +
$#C+1 = 68 : ~/encyclopedia/old_files/data/D110/D.1100240 Dunford\ANDPettis property
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Equivalently, given weakly convergent sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102408.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d1102409.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024010.png" /> in its topological dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024011.png" />, the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024012.png" /> also converges. Contrary to intuition this does not always happen. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024013.png" /> denotes the canonical basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024014.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024015.png" /> is weakly convergent to zero although <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024016.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The property was isolated and defined by A. Grothendieck [[#References|[a7]]] after the following classical result of N. Dunford and B.J. Pettis [[#References|[a5]]]: For any measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024017.png" /> and any Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024018.png" />, every weakly compact operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024019.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024020.png" /> is completely continuous.
+
The property of a [[Banach space|Banach space]] $  X $
 +
that every continuous operator  $  T : X \rightarrow Y $
 +
sending bounded sets of  $  X $
 +
into relatively weakly compact sets of  $  Y $(
 +
called weakly compact operators) also transforms weakly compact sets of  $  X $
 +
into norm-compact sets of $  Y $(
 +
such operators are called completely continuous; cf. also [[Completely-continuous operator|Completely-continuous operator]]). In short, it requires that weakly compact operators on  $  X $
 +
are completely continuous.
  
This result has its roots in examples of Sirvint, S. Kakutani, Y. Mimura and K. Yosida concerning weakly compact non-compact operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024021.png" /> which could be proven to have a compact square. The main examples of spaces having the Dunford–Pettis property are the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024022.png" /> of continuous functions on a compact space and the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024023.png" /> of integrable functions on a measure space, as well as complemented subspaces of these spaces. Other classical function spaces having the Dunford–Pettis property are: the Hardy space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024024.png" /> and its higher duals (cf. also [[Hardy spaces|Hardy spaces]]); the quotient space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024025.png" /> and its higher duals (the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024026.png" /> itself does not have the Dunford–Pettis property, nor does its dual BMO or its pre-dual VMO) (cf. also [[BMO-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024027.png" />-space]]; [[VMO-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024028.png" />-space]]); the ball algebra, the poly-disc algebra and their duals, and the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024029.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024030.png" />-smooth functions on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024031.png" />-dimensional torus.
+
Equivalently, given weakly convergent sequences  $  ( x _ {n} ) $
 +
in  $  X $
 +
and $  ( f _ {n} ) $
 +
in its topological dual  $  X  ^ {*} $,  
 +
the sequence  $  ( f _ {n} ( x _ {n} ) ) _ {n} $
 +
also converges. Contrary to intuition this does not always happen. For example, if  $  ( e _ {n} ) $
 +
denotes the canonical basis of  $  l _ {2} $,  
 +
then  $  ( e _ {n} ) $
 +
is weakly convergent to zero although  $  e _ {n} ( e _ {n} ) = 1 $.
  
A classical survey on the topic is [[#References|[a4]]]. Many of the open problems stated there have been solved by now, mainly by J. Bourgain [[#References|[a2]]], [[#References|[a3]]], who introduced new techniques for working with the Dunford–Pettis property, and by M. Talagrand [[#References|[a8]]], who gave an example of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024032.png" /> with the Dunford–Pettis property such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024034.png" /> fail the Dunford–Pettis property.
+
The property was isolated and defined by A. Grothendieck [[#References|[a7]]] after the following classical result of N. Dunford and B.J. Pettis [[#References|[a5]]]: For any measure  $  \mu $
 +
and any Banach space  $  Y $,
 +
every weakly compact operator  $  L _ {1} ( \mu ) $
 +
into  $  Y $
 +
is completely continuous.
  
The Dunford–Pettis property is not easy to work with, nor is it well understood. In general, it is difficult to prove that a given concrete space has the property; quoting J. Diestel: "I know of no case where the reward (when it comes) is easily attained" . On the question of structure theorems, many open problems remain. One of the most striking is as follows. When does the dual of a space that has the Dunford–Pettis property have the Dunford–Pettis property? It is clear that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024035.png" /> has the Dunford–Pettis property, then so does <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024036.png" />. From Rosenthal's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024038.png" /> theorem it follows that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024039.png" /> has the Dunford–Pettis property and does not contain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024040.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024041.png" /> has the Dunford–Pettis property. Stegall has shown that although the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024042.png" /> has the Dunford–Pettis property (since weakly convergent sequences are norm convergent), its dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024043.png" /> does not have the Dunford–Pettis property (because it contains complemented copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024044.png" />).
+
This result has its roots in examples of Sirvint, S. Kakutani, Y. Mimura and K. Yosida concerning weakly compact non-compact operators on  $  L _ {1} ( 0,1 ) $
 +
which could be proven to have a compact square. The main examples of spaces having the Dunford–Pettis property are the spaces  $ C ( K ) $
 +
of continuous functions on a compact space and the spaces  $  L _ {1} ( \mu ) $
 +
of integrable functions on a measure space, as well as complemented subspaces of these spaces. Other classical function spaces having the Dunford–Pettis property are: the Hardy space  $  H  ^  \infty  $
 +
and its higher duals (cf. also [[Hardy spaces|Hardy spaces]]); the quotient space  $  L _ {1} /H  ^ {1} $
 +
and its higher duals (the space $  H  ^ {1} $
 +
itself does not have the Dunford–Pettis property, nor does its dual BMO or its pre-dual VMO) (cf. also [[BMO-space| $  { \mathop{\rm BMO} } $-
 +
space]]; [[VMO-space| $  { \mathop{\rm VMO} } $-
 +
space]]); the ball algebra, the poly-disc algebra and their duals, and the spaces  $  C  ^ {k} ( T  ^ {n} ) $
 +
of $  k $-
 +
smooth functions on the  $  n $-
 +
dimensional torus.
  
A [[Reflexive space|reflexive space]] does not have the Dunford–Pettis property unless it is finite-dimensional. The Grothendieck spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024047.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024048.png" /> (cf. [[Grothendieck space|Grothendieck space]]) also possess the Dunford–Pettis property (see [[#References|[a9]]], [[#References|[a10]]]).
+
A classical survey on the topic is [[#References|[a4]]]. Many of the open problems stated there have been solved by now, mainly by J. Bourgain [[#References|[a2]]], [[#References|[a3]]], who introduced new techniques for working with the Dunford–Pettis property, and by M. Talagrand [[#References|[a8]]], who gave an example of a space  $  X $
 +
with the Dunford–Pettis property such that  $  C ( K,X ) $
 +
and  $  L _ {1} ( \mu,X  ^ {*} ) $
 +
fail the Dunford–Pettis property.
  
A Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024049.png" /> is a Grothendieck space with the Dunford–Pettis property if and only if every weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024050.png" /> convergent sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024051.png" /> converges weakly and uniformly on weakly compact subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024052.png" />, if and only if every bounded [[Linear operator|linear operator]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024053.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024054.png" /> is weakly compact and maps weakly compact sets into norm-compact sets.
+
The Dunford–Pettis property is not easy to work with, nor is it well understood. In general, it is difficult to prove that a given concrete space has the property; quoting J. Diestel: "I know of no case where the reward (when it comes) is easily attained" . On the question of structure theorems, many open problems remain. One of the most striking is as follows. When does the dual of a space that has the Dunford–Pettis property have the Dunford–Pettis property? It is clear that if  $  X  ^ {*} $
 +
has the Dunford–Pettis property, then so does  $  X $.
 +
From Rosenthal's  $  l _ {1} $
 +
theorem it follows that if $  X $
 +
has the Dunford–Pettis property and does not contain  $  l _ {1} $,
 +
then  $  X  ^ {*} $
 +
has the Dunford–Pettis property. Stegall has shown that although the space  $  l _ {1} ( l _ {2}  ^ {n} ) $
 +
has the Dunford–Pettis property (since weakly convergent sequences are norm convergent), its dual  $  l _  \infty  ( l _ {2}  ^ {n} ) $
 +
does not have the Dunford–Pettis property (because it contains complemented copies of  $  l _ {2} $).
  
An interesting phenomenon about Grothendieck spaces with the Dunford–Pettis property is that in many cases strong convergence of operators on such a space (cf. also [[Strong topology|Strong topology]]) implies [[Uniform convergence|uniform convergence]]. For example, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024055.png" /> be a Grothendieck space with the Dunford–Pettis property. Then:
+
A [[Reflexive space|reflexive space]] does not have the Dunford–Pettis property unless it is finite-dimensional. The Grothendieck spaces  $  C ( \Omega ) $,
 +
$  L  ^  \infty  ( \mu ) $,
 +
$  B ( S, \Sigma ) $,
 +
and  $  H  ^  \infty  ( D ) $(
 +
cf. [[Grothendieck space|Grothendieck space]]) also possess the Dunford–Pettis property (see [[#References|[a9]]], [[#References|[a10]]]).
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024056.png" /> does not have a Schauder decomposition, or equivalently, if a sequence of projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024057.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024058.png" /> converges weakly to the identity operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024060.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024061.png" /> sufficiently large;
+
A Banach space  $  X $
 +
is a Grothendieck space with the Dunford–Pettis property if and only if every weak- $  * $
 +
convergent sequence in  $  X  ^ {*} $
 +
converges weakly and uniformly on weakly compact subsets of  $  X $,
 +
if and only if every bounded [[Linear operator|linear operator]] from  $  X $
 +
into  $  c _ {0} $
 +
is weakly compact and maps weakly compact sets into norm-compact sets.
  
2) if the Cesáro mean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024062.png" /> of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024063.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024064.png" /> converges strongly, then it converges uniformly;
+
An interesting phenomenon about Grothendieck spaces with the Dunford–Pettis property is that in many cases strong convergence of operators on such a space (cf. also [[Strong topology|Strong topology]]) implies [[Uniform convergence|uniform convergence]]. For example, let  $  X $
 +
be a Grothendieck space with the Dunford–Pettis property. Then:
  
3) all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024065.png" />-semi-groups on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024066.png" /> are norm-continuous (see [[#References|[a9]]], [[#References|[a10]]]);
+
1) $  X $
 +
does not have a Schauder decomposition, or equivalently, if a sequence of projections  $  \{ P _ {n} \} $
 +
on $  X $
 +
converges weakly to the identity operator  $  I $,
 +
then  $  P _ {n} = I $
 +
for  $  n $
 +
sufficiently large;
  
4) all strongly continuous cosine operator functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024067.png" /> are norm-continuous [[#References|[a11]]];
+
2) if the Cesáro mean  $  n ^ {- 1 } \sum _ {k = 0 }  ^ {n - 1 } T  ^ {k} $
 +
of an operator  $  T $
 +
on  $  X $
 +
converges strongly, then it converges uniformly;
  
5) for general ergodic systems on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024068.png" />, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024069.png" />-semi-groups and cosine operator functions, strong ergodicity implies uniform ergodicity (see [[#References|[a12]]]).
+
3) all  $  C _ {0} $-
 +
semi-groups on  $  X $
 +
are norm-continuous (see [[#References|[a9]]], [[#References|[a10]]]);
 +
 
 +
4) all strongly continuous cosine operator functions on  $  X $
 +
are norm-continuous [[#References|[a11]]];
 +
 
 +
5) for general ergodic systems on $  X $,  
 +
in particular, $  C _ {0} $-
 +
semi-groups and cosine operator functions, strong ergodicity implies uniform ergodicity (see [[#References|[a12]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Bourgain,  "On the Dunford–Pettis property"  ''Proc. Amer. Math. Soc.'' , '''81'''  (1981)  pp. 265–272</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Bourgain,  "New Banach space properties of the disc algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024070.png" />"  ''Acta Math.'' , '''152'''  (1984)  pp. 1–48</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Bourgain,  "The Dunford–Pettis property for the ball-algebras, the polydisc algebra, and the Sobolev spaces"  ''Studia Math.'' , '''77'''  (1984)  pp. 245–253</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Diestel,  "A survey or results related to the Dunford–Pettis property" , ''Contemp. Math.'' , '''2''' , Amer. Math. Soc.  (1980)  pp. 15–60</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  N. Dunford,  B.J. Pettis,  "Linear operations on summable functions"  ''Trans. Amer. Math. Soc.'' , '''47'''  (1940)  pp. 323–392</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators" , '''I. General theory''' , Wiley, reprint  (1988)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A. Grothendieck,  "Sur les applications linéaires faiblement compactes d'espaces de type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024071.png" />"  ''Canad. J. Math.'' , '''5'''  (1953)  pp. 129–173</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  M. Talagrand,  "La propriété de Dunford–Pettis dans <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024072.png" /> et <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024073.png" />"  ''Israel J. Math.'' , '''44'''  (1983)  pp. 317–321</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  H.P. Lotz,  "Tauberian theorems for operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024074.png" /> and similar spaces" , ''Functional Analysis III. Surveys and Recent Results'' , North-Holland  (1984)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  H.P. Lotz,  "Uniform convergence of operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110240/d11024075.png" /> and similar spaces"  ''Math. Z.'' , '''190'''  (1985)  pp. 207–220</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  S.-Y. Shaw,  "Asymptotic behavior of pseudoresolvents on some Grothendieck spaces"  ''Publ. RIMS Kyoto Univ.'' , '''24'''  (1988)  pp. 277–282</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  S.-Y. Shaw,  "Uniform convergence of ergodic limits and approximate solutions"  ''Proc. Amer. Math. Soc.'' , '''114'''  (1992)  pp. 405–411</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Bourgain,  "On the Dunford–Pettis property"  ''Proc. Amer. Math. Soc.'' , '''81'''  (1981)  pp. 265–272</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J. Bourgain,  "New Banach space properties of the disc algebra and $G^\infty$"  ''Acta Math.'' , '''152'''  (1984)  pp. 1–48</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Bourgain,  "The Dunford–Pettis property for the ball-algebras, the polydisc algebra, and the Sobolev spaces"  ''Studia Math.'' , '''77'''  (1984)  pp. 245–253</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J. Diestel,  "A survey or results related to the Dunford–Pettis property" , ''Contemp. Math.'' , '''2''' , Amer. Math. Soc.  (1980)  pp. 15–60</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  N. Dunford,  B.J. Pettis,  "Linear operations on summable functions"  ''Trans. Amer. Math. Soc.'' , '''47'''  (1940)  pp. 323–392</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators" , '''I. General theory''' , Wiley, reprint  (1988)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A. Grothendieck,  "Sur les applications linéaires faiblement compactes d'espaces de type $C(K)$"  ''Canad. J. Math.'' , '''5'''  (1953)  pp. 129–173</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  M. Talagrand,  "La propriété de Dunford–Pettis dans $C(K,E)$ et $L_1(E)$"  ''Israel J. Math.'' , '''44'''  (1983)  pp. 317–321</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  H.P. Lotz,  "Tauberian theorems for operators on $L^\infty$ and similar spaces" , ''Functional Analysis III. Surveys and Recent Results'' , North-Holland  (1984)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  H.P. Lotz,  "Uniform convergence of operators on $L^\infty$ and similar spaces"  ''Math. Z.'' , '''190'''  (1985)  pp. 207–220</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  S.-Y. Shaw,  "Asymptotic behavior of pseudoresolvents on some Grothendieck spaces"  ''Publ. RIMS Kyoto Univ.'' , '''24'''  (1988)  pp. 277–282</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  S.-Y. Shaw,  "Uniform convergence of ergodic limits and approximate solutions"  ''Proc. Amer. Math. Soc.'' , '''114'''  (1992)  pp. 405–411</TD></TR></table>

Latest revision as of 12:01, 26 March 2023


The property of a Banach space $ X $ that every continuous operator $ T : X \rightarrow Y $ sending bounded sets of $ X $ into relatively weakly compact sets of $ Y $( called weakly compact operators) also transforms weakly compact sets of $ X $ into norm-compact sets of $ Y $( such operators are called completely continuous; cf. also Completely-continuous operator). In short, it requires that weakly compact operators on $ X $ are completely continuous.

Equivalently, given weakly convergent sequences $ ( x _ {n} ) $ in $ X $ and $ ( f _ {n} ) $ in its topological dual $ X ^ {*} $, the sequence $ ( f _ {n} ( x _ {n} ) ) _ {n} $ also converges. Contrary to intuition this does not always happen. For example, if $ ( e _ {n} ) $ denotes the canonical basis of $ l _ {2} $, then $ ( e _ {n} ) $ is weakly convergent to zero although $ e _ {n} ( e _ {n} ) = 1 $.

The property was isolated and defined by A. Grothendieck [a7] after the following classical result of N. Dunford and B.J. Pettis [a5]: For any measure $ \mu $ and any Banach space $ Y $, every weakly compact operator $ L _ {1} ( \mu ) $ into $ Y $ is completely continuous.

This result has its roots in examples of Sirvint, S. Kakutani, Y. Mimura and K. Yosida concerning weakly compact non-compact operators on $ L _ {1} ( 0,1 ) $ which could be proven to have a compact square. The main examples of spaces having the Dunford–Pettis property are the spaces $ C ( K ) $ of continuous functions on a compact space and the spaces $ L _ {1} ( \mu ) $ of integrable functions on a measure space, as well as complemented subspaces of these spaces. Other classical function spaces having the Dunford–Pettis property are: the Hardy space $ H ^ \infty $ and its higher duals (cf. also Hardy spaces); the quotient space $ L _ {1} /H ^ {1} $ and its higher duals (the space $ H ^ {1} $ itself does not have the Dunford–Pettis property, nor does its dual BMO or its pre-dual VMO) (cf. also $ { \mathop{\rm BMO} } $- space; $ { \mathop{\rm VMO} } $- space); the ball algebra, the poly-disc algebra and their duals, and the spaces $ C ^ {k} ( T ^ {n} ) $ of $ k $- smooth functions on the $ n $- dimensional torus.

A classical survey on the topic is [a4]. Many of the open problems stated there have been solved by now, mainly by J. Bourgain [a2], [a3], who introduced new techniques for working with the Dunford–Pettis property, and by M. Talagrand [a8], who gave an example of a space $ X $ with the Dunford–Pettis property such that $ C ( K,X ) $ and $ L _ {1} ( \mu,X ^ {*} ) $ fail the Dunford–Pettis property.

The Dunford–Pettis property is not easy to work with, nor is it well understood. In general, it is difficult to prove that a given concrete space has the property; quoting J. Diestel: "I know of no case where the reward (when it comes) is easily attained" . On the question of structure theorems, many open problems remain. One of the most striking is as follows. When does the dual of a space that has the Dunford–Pettis property have the Dunford–Pettis property? It is clear that if $ X ^ {*} $ has the Dunford–Pettis property, then so does $ X $. From Rosenthal's $ l _ {1} $ theorem it follows that if $ X $ has the Dunford–Pettis property and does not contain $ l _ {1} $, then $ X ^ {*} $ has the Dunford–Pettis property. Stegall has shown that although the space $ l _ {1} ( l _ {2} ^ {n} ) $ has the Dunford–Pettis property (since weakly convergent sequences are norm convergent), its dual $ l _ \infty ( l _ {2} ^ {n} ) $ does not have the Dunford–Pettis property (because it contains complemented copies of $ l _ {2} $).

A reflexive space does not have the Dunford–Pettis property unless it is finite-dimensional. The Grothendieck spaces $ C ( \Omega ) $, $ L ^ \infty ( \mu ) $, $ B ( S, \Sigma ) $, and $ H ^ \infty ( D ) $( cf. Grothendieck space) also possess the Dunford–Pettis property (see [a9], [a10]).

A Banach space $ X $ is a Grothendieck space with the Dunford–Pettis property if and only if every weak- $ * $ convergent sequence in $ X ^ {*} $ converges weakly and uniformly on weakly compact subsets of $ X $, if and only if every bounded linear operator from $ X $ into $ c _ {0} $ is weakly compact and maps weakly compact sets into norm-compact sets.

An interesting phenomenon about Grothendieck spaces with the Dunford–Pettis property is that in many cases strong convergence of operators on such a space (cf. also Strong topology) implies uniform convergence. For example, let $ X $ be a Grothendieck space with the Dunford–Pettis property. Then:

1) $ X $ does not have a Schauder decomposition, or equivalently, if a sequence of projections $ \{ P _ {n} \} $ on $ X $ converges weakly to the identity operator $ I $, then $ P _ {n} = I $ for $ n $ sufficiently large;

2) if the Cesáro mean $ n ^ {- 1 } \sum _ {k = 0 } ^ {n - 1 } T ^ {k} $ of an operator $ T $ on $ X $ converges strongly, then it converges uniformly;

3) all $ C _ {0} $- semi-groups on $ X $ are norm-continuous (see [a9], [a10]);

4) all strongly continuous cosine operator functions on $ X $ are norm-continuous [a11];

5) for general ergodic systems on $ X $, in particular, $ C _ {0} $- semi-groups and cosine operator functions, strong ergodicity implies uniform ergodicity (see [a12]).

References

[a1] J. Bourgain, "On the Dunford–Pettis property" Proc. Amer. Math. Soc. , 81 (1981) pp. 265–272
[a2] J. Bourgain, "New Banach space properties of the disc algebra and $G^\infty$" Acta Math. , 152 (1984) pp. 1–48
[a3] J. Bourgain, "The Dunford–Pettis property for the ball-algebras, the polydisc algebra, and the Sobolev spaces" Studia Math. , 77 (1984) pp. 245–253
[a4] J. Diestel, "A survey or results related to the Dunford–Pettis property" , Contemp. Math. , 2 , Amer. Math. Soc. (1980) pp. 15–60
[a5] N. Dunford, B.J. Pettis, "Linear operations on summable functions" Trans. Amer. Math. Soc. , 47 (1940) pp. 323–392
[a6] N. Dunford, J.T. Schwartz, "Linear operators" , I. General theory , Wiley, reprint (1988)
[a7] A. Grothendieck, "Sur les applications linéaires faiblement compactes d'espaces de type $C(K)$" Canad. J. Math. , 5 (1953) pp. 129–173
[a8] M. Talagrand, "La propriété de Dunford–Pettis dans $C(K,E)$ et $L_1(E)$" Israel J. Math. , 44 (1983) pp. 317–321
[a9] H.P. Lotz, "Tauberian theorems for operators on $L^\infty$ and similar spaces" , Functional Analysis III. Surveys and Recent Results , North-Holland (1984)
[a10] H.P. Lotz, "Uniform convergence of operators on $L^\infty$ and similar spaces" Math. Z. , 190 (1985) pp. 207–220
[a11] S.-Y. Shaw, "Asymptotic behavior of pseudoresolvents on some Grothendieck spaces" Publ. RIMS Kyoto Univ. , 24 (1988) pp. 277–282
[a12] S.-Y. Shaw, "Uniform convergence of ergodic limits and approximate solutions" Proc. Amer. Math. Soc. , 114 (1992) pp. 405–411
How to Cite This Entry:
Dunford-Pettis property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dunford-Pettis_property&oldid=14418
This article was adapted from an original article by J.M.F. CastilloS.-Y. Shaw (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article