|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | An ordinary [[Equivariant cohomology|equivariant cohomology]] for a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108701.png" />, defined in [[#References|[a1]]], on the [[Category|category]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108702.png" />-CW of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108704.png" />-complexes (cf. [[Complex|Complex]]; [[CW-complex|CW-complex]]). The objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108705.png" />-CW are the CW-complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108706.png" /> with a cellular action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108707.png" />, satisfying the condition that, for every subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108708.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b1108709.png" />, the fixed point set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087010.png" /> is a subcomplex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087011.png" />. The morphisms are the cellular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087012.png" />-mappings. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087013.png" /> be the full subcategory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087014.png" />-CW whose objects are the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087015.png" />-orbits <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087017.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087018.png" />. For every contravariant [[Functor|functor]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087019.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087020.png" /> to the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087021.png" /> of Abelian groups, there exists a Bredon cohomology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087022.png" /> which, after restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087023.png" />, vanishes for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087024.png" /> and is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087025.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087026.png" />.
| + | <!-- |
| + | b1108701.png |
| + | $#A+1 = 67 n = 2 |
| + | $#C+1 = 67 : ~/encyclopedia/old_files/data/B110/B.1100870 Bredon cohomology |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087027.png" /> be the chain [[Complex|complex]] of functors from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087028.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087029.png" /> such that, for every subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087030.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087032.png" /> is the ordinary cellular chain complex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087033.png" />. Then
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087034.png" /></td> </tr></table>
| + | An ordinary [[Equivariant cohomology|equivariant cohomology]] for a finite group $ G $, |
| + | defined in [[#References|[a1]]], on the [[Category|category]] $ G $- |
| + | CW of $ G $- |
| + | complexes (cf. [[Complex|Complex]]; [[CW-complex|CW-complex]]). The objects of $ G $- |
| + | CW are the CW-complexes $ X $ |
| + | with a cellular action of $ G $, |
| + | satisfying the condition that, for every subgroup $ H $ |
| + | of $ G $, |
| + | the fixed point set $ X ^ {H} $ |
| + | is a subcomplex of $ X $. |
| + | The morphisms are the cellular $ G $- |
| + | mappings. Let $ O _ {G} $ |
| + | be the full subcategory of $ G $- |
| + | CW whose objects are the $ G $- |
| + | orbits $ G/H $, |
| + | where $ H $ |
| + | is a subgroup of $ G $. |
| + | For every contravariant [[Functor|functor]] $ M $ |
| + | from $ O _ {G} $ |
| + | to the category $ { \mathop{\rm Ab} } $ |
| + | of Abelian groups, there exists a Bredon cohomology theory $ \{ H ^ {n} _ {G} ( -,M ) \} _ {n \in \mathbf N } $ |
| + | which, after restriction to $ O _ {G} $, |
| + | vanishes for $ n > 0 $ |
| + | and is equal to $ M $ |
| + | for $ n = 0 $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087035.png" /> denotes the set of natural transformations of functors. The functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087036.png" /> are projective objects in the [[Category|category]] of coefficient systems and there is a [[Spectral sequence|spectral sequence]]
| + | Let $ c _ {*} ( X ) $ |
| + | be the chain [[Complex|complex]] of functors from $ O _ {G} $ |
| + | to $ { \mathop{\rm Ab} } $ |
| + | such that, for every subgroup $ H $ |
| + | of $ G $, |
| + | $ c _ {*} ( X ) ( G/H ) = C _ {*} ( X ^ {H} ) $ |
| + | is the ordinary cellular chain complex of $ X ^ {H} $. |
| + | Then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087037.png" /></td> </tr></table>
| + | $$ |
| + | H ^ {n} _ {G} ( X,M ) = H ^ {n} ( { \mathop{\rm Hom} } _ {O _ {G} } ( c _ {*} ( X ) ,M ) ) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087038.png" />. | + | where $ { \mathop{\rm Hom} } _ {O _ {G} } ( -, - ) $ |
| + | denotes the set of natural transformations of functors. The functors $ c _ {n} ( X ) $ |
| + | are projective objects in the [[Category|category]] of coefficient systems and there is a [[Spectral sequence|spectral sequence]] |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087039.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087040.png" />-space with base point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087041.png" /> (cf., e.g., [[Equivariant cohomology|Equivariant cohomology]]). Important examples of coefficient systems are the [[Homotopy|homotopy]] group functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087042.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087043.png" />. The [[Obstruction|obstruction]] theory for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087044.png" />-mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087045.png" /> is formulated in terms of the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087046.png" />. For any coefficient system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087047.png" /> and natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087048.png" />, there is a pointed Eilenberg–MacLane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087050.png" />-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087051.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087053.png" /> vanishes whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087054.png" />. For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087055.png" />-complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087057.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087058.png" /> denotes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087059.png" />-homotopy classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087060.png" />-mappings.
| + | $$ |
| + | { \mathop{\rm Ext} } ^ {p} _ {O _ {G} } ( h _ {q} ( X ) ,M ) \Rightarrow H ^ {p + q } _ {G} ( X,M ) , |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087061.png" /> is an equivariant cohomology theory defined on the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087062.png" />-CW, then there exists an Atiyah–Hirzebruch-type spectral sequence
| + | where $ h _ {q} ( X ) ( G/H ) = H _ {q} ( X ^ {H} ) $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087063.png" /></td> </tr></table>
| + | Let $ Y $ |
| + | be a $ G $- |
| + | space with base point $ y _ {0} $( |
| + | cf., e.g., [[Equivariant cohomology|Equivariant cohomology]]). Important examples of coefficient systems are the [[Homotopy|homotopy]] group functors $ \pi _ {n} ( Y ) $ |
| + | defined by $ \pi _ {n} ( Y ) ( G/H ) = \pi _ {n} ( Y ^ {H} ,y _ {0} ) $. |
| + | The [[Obstruction|obstruction]] theory for $ G $- |
| + | mappings $ f : X \rightarrow Y $ |
| + | is formulated in terms of the cohomology groups $ H ^ {n} _ {G} ( X, \pi _ {m} ( Y ) ) $. |
| + | For any coefficient system $ M $ |
| + | and natural number $ n > 0 $, |
| + | there is a pointed Eilenberg–MacLane $ G $- |
| + | complex $ K ( M,n ) $ |
| + | such that $ \pi _ {n} ( K ( M,n ) ) = M $ |
| + | and $ \pi _ {m} ( K ( M,n ) ) $ |
| + | vanishes whenever $ n \neq m $. |
| + | For every $ G $- |
| + | complex $ X $, |
| + | $ H ^ {n} _ {G} ( X,M ) = [ X,K ( M,n ) ] _ {G} $, |
| + | where $ [ -, - ] _ {G} $ |
| + | denotes $ G $- |
| + | homotopy classes of $ G $- |
| + | mappings. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087064.png" /> is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087065.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087066.png" />. Bredon cohomology for an arbitrary topological group is studied in [[#References|[a4]]] and [[#References|[a5]]]. Singular ordinary equivariant cohomology is defined in [[#References|[a2]]] (the finite case) and in [[#References|[a3]]]. If a coefficient system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087067.png" /> is a Mackey functor, then the Bredon cohomology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087068.png" /> can be extended to an ordinary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087069.png" />-graded cohomology [[#References|[a6]]]. | + | If $ h ^ {*} _ {G} ( - ) $ |
| + | is an equivariant cohomology theory defined on the category $ G $- |
| + | CW, then there exists an Atiyah–Hirzebruch-type spectral sequence |
| + | |
| + | $$ |
| + | H ^ {p} _ {G} ( X,h ^ {q} ) \rightarrow h ^ {p + q } _ {G} ( X ) , |
| + | $$ |
| + | |
| + | where $ h ^ {q} $ |
| + | is the restriction of $ h ^ {q} _ {G} ( - ) $ |
| + | to $ O _ {G} $. |
| + | Bredon cohomology for an arbitrary topological group is studied in [[#References|[a4]]] and [[#References|[a5]]]. Singular ordinary equivariant cohomology is defined in [[#References|[a2]]] (the finite case) and in [[#References|[a3]]]. If a coefficient system $ M $ |
| + | is a Mackey functor, then the Bredon cohomology $ H ^ {*} _ {G} ( -,M ) $ |
| + | can be extended to an ordinary $ { \mathop{\rm RO} } ( G ) $- |
| + | graded cohomology [[#References|[a6]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.E. Bredon, "Equivariant cohomology theories" , ''Lecture Notes in Mathematics'' , '''34''' , Springer (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T. Bröcker, "Singuläre Definition der äquivarianten Bredon Homologie" ''Manuscr. Math.'' , '''5''' (1971) pp. 91–102</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Illman, "Equivariant singular homology and cohomology" , ''Memoirs'' , '''156''' , Amer. Math. Soc. (1975)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> T. Matumoto, "Equivariant cohomology theories on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087070.png" />-CW-complexes" ''Osaka J. Math.'' , '''10''' (1973) pp. 51–68</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S.J. Wilson, "Equivariant homology theories on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087071.png" />-complexes" ''Trans. Amer. Math. Soc.'' , '''212''' (1975) pp. 155–171</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> L.G. Lewis, J.P. May, J. McClure, "Ordinary RO(G)-graded cohomology" ''Bull. Amer. Math. Soc.'' , '''4''' (1981) pp. 208–212</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.E. Bredon, "Equivariant cohomology theories" , ''Lecture Notes in Mathematics'' , '''34''' , Springer (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T. Bröcker, "Singuläre Definition der äquivarianten Bredon Homologie" ''Manuscr. Math.'' , '''5''' (1971) pp. 91–102</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Illman, "Equivariant singular homology and cohomology" , ''Memoirs'' , '''156''' , Amer. Math. Soc. (1975)</TD></TR> |
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> T. Matumoto, "Equivariant cohomology theories on G-CW-complexes" ''Osaka J. Math.'' , '''10''' (1973) pp. 51–68</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S.J. Wilson, "Equivariant homology theories on G-complexes" ''Trans. Amer. Math. Soc.'' , '''212''' (1975) pp. 155–171</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> L.G. Lewis, J.P. May, J. McClure, "Ordinary RO(G)-graded cohomology" ''Bull. Amer. Math. Soc.'' , '''4''' (1981) pp. 208–212</TD></TR></table> |
An ordinary equivariant cohomology for a finite group $ G $,
defined in [a1], on the category $ G $-
CW of $ G $-
complexes (cf. Complex; CW-complex). The objects of $ G $-
CW are the CW-complexes $ X $
with a cellular action of $ G $,
satisfying the condition that, for every subgroup $ H $
of $ G $,
the fixed point set $ X ^ {H} $
is a subcomplex of $ X $.
The morphisms are the cellular $ G $-
mappings. Let $ O _ {G} $
be the full subcategory of $ G $-
CW whose objects are the $ G $-
orbits $ G/H $,
where $ H $
is a subgroup of $ G $.
For every contravariant functor $ M $
from $ O _ {G} $
to the category $ { \mathop{\rm Ab} } $
of Abelian groups, there exists a Bredon cohomology theory $ \{ H ^ {n} _ {G} ( -,M ) \} _ {n \in \mathbf N } $
which, after restriction to $ O _ {G} $,
vanishes for $ n > 0 $
and is equal to $ M $
for $ n = 0 $.
Let $ c _ {*} ( X ) $
be the chain complex of functors from $ O _ {G} $
to $ { \mathop{\rm Ab} } $
such that, for every subgroup $ H $
of $ G $,
$ c _ {*} ( X ) ( G/H ) = C _ {*} ( X ^ {H} ) $
is the ordinary cellular chain complex of $ X ^ {H} $.
Then
$$
H ^ {n} _ {G} ( X,M ) = H ^ {n} ( { \mathop{\rm Hom} } _ {O _ {G} } ( c _ {*} ( X ) ,M ) ) ,
$$
where $ { \mathop{\rm Hom} } _ {O _ {G} } ( -, - ) $
denotes the set of natural transformations of functors. The functors $ c _ {n} ( X ) $
are projective objects in the category of coefficient systems and there is a spectral sequence
$$
{ \mathop{\rm Ext} } ^ {p} _ {O _ {G} } ( h _ {q} ( X ) ,M ) \Rightarrow H ^ {p + q } _ {G} ( X,M ) ,
$$
where $ h _ {q} ( X ) ( G/H ) = H _ {q} ( X ^ {H} ) $.
Let $ Y $
be a $ G $-
space with base point $ y _ {0} $(
cf., e.g., Equivariant cohomology). Important examples of coefficient systems are the homotopy group functors $ \pi _ {n} ( Y ) $
defined by $ \pi _ {n} ( Y ) ( G/H ) = \pi _ {n} ( Y ^ {H} ,y _ {0} ) $.
The obstruction theory for $ G $-
mappings $ f : X \rightarrow Y $
is formulated in terms of the cohomology groups $ H ^ {n} _ {G} ( X, \pi _ {m} ( Y ) ) $.
For any coefficient system $ M $
and natural number $ n > 0 $,
there is a pointed Eilenberg–MacLane $ G $-
complex $ K ( M,n ) $
such that $ \pi _ {n} ( K ( M,n ) ) = M $
and $ \pi _ {m} ( K ( M,n ) ) $
vanishes whenever $ n \neq m $.
For every $ G $-
complex $ X $,
$ H ^ {n} _ {G} ( X,M ) = [ X,K ( M,n ) ] _ {G} $,
where $ [ -, - ] _ {G} $
denotes $ G $-
homotopy classes of $ G $-
mappings.
If $ h ^ {*} _ {G} ( - ) $
is an equivariant cohomology theory defined on the category $ G $-
CW, then there exists an Atiyah–Hirzebruch-type spectral sequence
$$
H ^ {p} _ {G} ( X,h ^ {q} ) \rightarrow h ^ {p + q } _ {G} ( X ) ,
$$
where $ h ^ {q} $
is the restriction of $ h ^ {q} _ {G} ( - ) $
to $ O _ {G} $.
Bredon cohomology for an arbitrary topological group is studied in [a4] and [a5]. Singular ordinary equivariant cohomology is defined in [a2] (the finite case) and in [a3]. If a coefficient system $ M $
is a Mackey functor, then the Bredon cohomology $ H ^ {*} _ {G} ( -,M ) $
can be extended to an ordinary $ { \mathop{\rm RO} } ( G ) $-
graded cohomology [a6].
References
[a1] | G.E. Bredon, "Equivariant cohomology theories" , Lecture Notes in Mathematics , 34 , Springer (1967) |
[a2] | T. Bröcker, "Singuläre Definition der äquivarianten Bredon Homologie" Manuscr. Math. , 5 (1971) pp. 91–102 |
[a3] | S. Illman, "Equivariant singular homology and cohomology" , Memoirs , 156 , Amer. Math. Soc. (1975) |
[a4] | T. Matumoto, "Equivariant cohomology theories on G-CW-complexes" Osaka J. Math. , 10 (1973) pp. 51–68 |
[a5] | S.J. Wilson, "Equivariant homology theories on G-complexes" Trans. Amer. Math. Soc. , 212 (1975) pp. 155–171 |
[a6] | L.G. Lewis, J.P. May, J. McClure, "Ordinary RO(G)-graded cohomology" Bull. Amer. Math. Soc. , 4 (1981) pp. 208–212 |