Difference between revisions of "Anti-de Sitter space"
(Importing text file) |
m (→References: latexify) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | a1106201.png | ||
+ | $#A+1 = 60 n = 1 | ||
+ | $#C+1 = 60 : ~/encyclopedia/old_files/data/A110/A.1100620 Anti\AAhde Sitter space, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''complete maximal space-like hypersurfaces in an'' | ''complete maximal space-like hypersurfaces in an'' | ||
− | Let | + | Let $ \mathbf R _ {p + 1 } ^ {n + p + 1 } $ |
+ | be an $ ( n + p + 1 ) $- | ||
+ | dimensional [[Minkowski space|Minkowski space]] of index $ p + 1 $, | ||
+ | i.e., $ \mathbf R _ {p + 1 } ^ {n + p + 1 } = \{ ( x _ {1} \dots x _ {n + p + 1 } ) \in \mathbf R ^ {n + p + 1 } \} $ | ||
+ | and is equipped with the Lorentz metric $ \sum _ {i = 1 } ^ {n} ( dx _ {i} ) ^ {2} - \sum _ {j = 1 } ^ {p + 1 } ( dx _ {n + j } ) ^ {2} $. | ||
+ | For $ c > 0 $, | ||
+ | let | ||
− | + | $$ | |
+ | H _ {p} ^ {n + p } ( c ) = \{ {x \in \mathbf R _ {p + 1 } ^ {n + p + 1 } } | ||
+ | : | ||
+ | $$ | ||
− | + | $$ | |
+ | \ | ||
+ | {} {x _ {1} ^ {2} + \dots + x _ {n} ^ {2} - x _ {n + 1 } ^ {2} - \dots - x _ {n + p + 1 } ^ {2} = - {1 / c } } \} . | ||
+ | $$ | ||
− | Thus, | + | Thus, $ H _ {p} ^ {n + p } ( c ) $ |
+ | is an $ ( n + p ) $- | ||
+ | dimensional indefinite [[Riemannian manifold|Riemannian manifold]] of index $ p $ | ||
+ | and of constant [[Curvature|curvature]] $ - c $. | ||
+ | It is called an $ ( n + p ) $- | ||
+ | dimensional anti-de Sitter space of constant curvature $ - c $ | ||
+ | and of index $ p $. | ||
+ | A hypersurface $ M $ | ||
+ | of $ H _ {1} ^ {n + 1 } ( c ) $ | ||
+ | is said to be space-like if the metric on $ M $ | ||
+ | induced by that of ambient space $ H _ {1} ^ {n + 1 } ( c ) $ | ||
+ | is positive definite. The mean curvature $ H $ | ||
+ | of $ M $ | ||
+ | is defined as in the case of Riemannian manifolds. By definition, $ M $ | ||
+ | is a maximal hypersurface if the mean curvature $ H $ | ||
+ | of $ M $ | ||
+ | is identically zero. S. Ishihara proved that a complete maximal space-like hypersurface $ M $ | ||
+ | in $ H _ {1} ^ {n + 1 } ( c ) $ | ||
+ | satisfies $ S \leq nc $, | ||
+ | and $ S = nc $ | ||
+ | if and only if $ M $ | ||
+ | is isometric to the hyperbolic cylinder $ H ^ {k} ( c _ {1} ) \times H ^ {n - k } ( c _ {2} ) $, | ||
+ | where $ S $ | ||
+ | is the squared norm of the [[Second fundamental form|second fundamental form]] of $ M $ | ||
+ | and $ H ^ {k} ( c _ {i} ) $, | ||
+ | $ i = 1, 2 $, | ||
+ | is a $ k $- | ||
+ | dimensional hyperbolic space of constant curvature $ c _ {i} $. | ||
+ | The rigidity of the hyperbolic cylinder $ H ^ {k} ( c _ {1} ) \times H ^ {n - k } ( c _ {2} ) $ | ||
+ | in $ H _ {1} ^ {n + 1 } ( c ) $ | ||
+ | was proved by U.-H. Ki, H.S. Kim and H. Nakagawa [[#References|[a3]]]: for a given integer $ n $ | ||
+ | and constant $ c > 0 $, | ||
+ | there exists a constant $ C < nc $, | ||
+ | depending on $ n $ | ||
+ | and $ c $, | ||
+ | such that the hyperbolic cylinder $ H ^ {k} ( c _ {1} ) \times H ^ {n - k } ( c _ {2} ) $ | ||
+ | is the only complete maximal space-like hypersurface in $ H _ {1} ^ {n + 1 } ( c ) $ | ||
+ | of constant scalar curvature and such that $ S > C $. | ||
+ | In particular, for $ n = 3 $, | ||
+ | Q.M. Cheng [[#References|[a1]]] has characterized the complete maximal space-like hypersurfaces in $ H _ {1} ^ {4} ( c ) $ | ||
+ | under the condition of constant Gauss–Kronecker curvature (cf. [[Gaussian curvature|Gaussian curvature]]): Let $ M $ | ||
+ | be a $ 3 $- | ||
+ | dimensional complete maximal space-like hypersurface of $ H _ {1} ^ {4} ( c ) $. | ||
+ | Now: | ||
− | 1) if the Gauss–Kronecker curvature of | + | 1) if the Gauss–Kronecker curvature of $ M $ |
+ | is a non-zero constant, then $ M $ | ||
+ | is the hyperbolic cylinder $ H ^ {1} ( c _ {1} ) \times H ^ {2} ( c _ {2} ) $; | ||
− | 2) if the [[Scalar curvature|scalar curvature]] | + | 2) if the [[Scalar curvature|scalar curvature]] $ K $ |
+ | is constant and $ \inf K ^ {2} > 0 $, | ||
+ | then $ M $ | ||
+ | is the hyperbolic cylinder $ H ^ {1} ( c _ {1} ) \times H ^ {2} ( c _ {2} ) $. | ||
+ | There are no complete maximal space-like hypersurfaces in $ H _ {1} ^ {4} ( c ) $ | ||
+ | with constant scalar curvature and $ \sup K ^ {2} < { {S ^ {3} } / {54 } } $. | ||
On the other hand, complete space-like submanifolds in anti-de Sitter spaces with parallel mean curvature have been investigated by many authors. | On the other hand, complete space-like submanifolds in anti-de Sitter spaces with parallel mean curvature have been investigated by many authors. | ||
Line 18: | Line 92: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Q.M. Cheng, "Complete maximal space-like hypersurfaces of | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> Q.M. Cheng, "Complete maximal space-like hypersurfaces of $H_1^4(c)$" ''Manuscr. Math.'' , '''82''' (1994) pp. 149–160</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> T. Ishikawa, "Maximal space-like submanifolds of a pseudo–Riemannian space of constant curvature" ''Michigan Math. J.'' , '''35''' (1988) pp. 345–352</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> U-H. Ki, H.S. Kim, H. Nakagawa, "Complete maximal space-like hypersurfaces of an anti-de Sitter space" ''Kyungpook Math. J.'' , '''31''' (1991) pp. 131–141</TD></TR> | ||
+ | </table> |
Latest revision as of 06:52, 26 March 2023
complete maximal space-like hypersurfaces in an
Let $ \mathbf R _ {p + 1 } ^ {n + p + 1 } $ be an $ ( n + p + 1 ) $- dimensional Minkowski space of index $ p + 1 $, i.e., $ \mathbf R _ {p + 1 } ^ {n + p + 1 } = \{ ( x _ {1} \dots x _ {n + p + 1 } ) \in \mathbf R ^ {n + p + 1 } \} $ and is equipped with the Lorentz metric $ \sum _ {i = 1 } ^ {n} ( dx _ {i} ) ^ {2} - \sum _ {j = 1 } ^ {p + 1 } ( dx _ {n + j } ) ^ {2} $. For $ c > 0 $, let
$$ H _ {p} ^ {n + p } ( c ) = \{ {x \in \mathbf R _ {p + 1 } ^ {n + p + 1 } } : $$
$$ \ {} {x _ {1} ^ {2} + \dots + x _ {n} ^ {2} - x _ {n + 1 } ^ {2} - \dots - x _ {n + p + 1 } ^ {2} = - {1 / c } } \} . $$
Thus, $ H _ {p} ^ {n + p } ( c ) $ is an $ ( n + p ) $- dimensional indefinite Riemannian manifold of index $ p $ and of constant curvature $ - c $. It is called an $ ( n + p ) $- dimensional anti-de Sitter space of constant curvature $ - c $ and of index $ p $. A hypersurface $ M $ of $ H _ {1} ^ {n + 1 } ( c ) $ is said to be space-like if the metric on $ M $ induced by that of ambient space $ H _ {1} ^ {n + 1 } ( c ) $ is positive definite. The mean curvature $ H $ of $ M $ is defined as in the case of Riemannian manifolds. By definition, $ M $ is a maximal hypersurface if the mean curvature $ H $ of $ M $ is identically zero. S. Ishihara proved that a complete maximal space-like hypersurface $ M $ in $ H _ {1} ^ {n + 1 } ( c ) $ satisfies $ S \leq nc $, and $ S = nc $ if and only if $ M $ is isometric to the hyperbolic cylinder $ H ^ {k} ( c _ {1} ) \times H ^ {n - k } ( c _ {2} ) $, where $ S $ is the squared norm of the second fundamental form of $ M $ and $ H ^ {k} ( c _ {i} ) $, $ i = 1, 2 $, is a $ k $- dimensional hyperbolic space of constant curvature $ c _ {i} $. The rigidity of the hyperbolic cylinder $ H ^ {k} ( c _ {1} ) \times H ^ {n - k } ( c _ {2} ) $ in $ H _ {1} ^ {n + 1 } ( c ) $ was proved by U.-H. Ki, H.S. Kim and H. Nakagawa [a3]: for a given integer $ n $ and constant $ c > 0 $, there exists a constant $ C < nc $, depending on $ n $ and $ c $, such that the hyperbolic cylinder $ H ^ {k} ( c _ {1} ) \times H ^ {n - k } ( c _ {2} ) $ is the only complete maximal space-like hypersurface in $ H _ {1} ^ {n + 1 } ( c ) $ of constant scalar curvature and such that $ S > C $. In particular, for $ n = 3 $, Q.M. Cheng [a1] has characterized the complete maximal space-like hypersurfaces in $ H _ {1} ^ {4} ( c ) $ under the condition of constant Gauss–Kronecker curvature (cf. Gaussian curvature): Let $ M $ be a $ 3 $- dimensional complete maximal space-like hypersurface of $ H _ {1} ^ {4} ( c ) $. Now:
1) if the Gauss–Kronecker curvature of $ M $ is a non-zero constant, then $ M $ is the hyperbolic cylinder $ H ^ {1} ( c _ {1} ) \times H ^ {2} ( c _ {2} ) $;
2) if the scalar curvature $ K $ is constant and $ \inf K ^ {2} > 0 $, then $ M $ is the hyperbolic cylinder $ H ^ {1} ( c _ {1} ) \times H ^ {2} ( c _ {2} ) $. There are no complete maximal space-like hypersurfaces in $ H _ {1} ^ {4} ( c ) $ with constant scalar curvature and $ \sup K ^ {2} < { {S ^ {3} } / {54 } } $.
On the other hand, complete space-like submanifolds in anti-de Sitter spaces with parallel mean curvature have been investigated by many authors.
Cf. also De Sitter space.
References
[a1] | Q.M. Cheng, "Complete maximal space-like hypersurfaces of $H_1^4(c)$" Manuscr. Math. , 82 (1994) pp. 149–160 |
[a2] | T. Ishikawa, "Maximal space-like submanifolds of a pseudo–Riemannian space of constant curvature" Michigan Math. J. , 35 (1988) pp. 345–352 |
[a3] | U-H. Ki, H.S. Kim, H. Nakagawa, "Complete maximal space-like hypersurfaces of an anti-de Sitter space" Kyungpook Math. J. , 31 (1991) pp. 131–141 |
Anti-de Sitter space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Anti-de_Sitter_space&oldid=11698