Difference between revisions of "Abelian difference set"
m (link) |
m (→References: latexify) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a1100201.png | ||
+ | $#A+1 = 60 n = 1 | ||
+ | $#C+1 = 60 : ~/encyclopedia/old_files/data/A110/A.1100020 Abelian difference set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | Let $ G $ | ||
+ | be a [[Group|group]] of order $ v $ | ||
+ | and $ D \subseteq G $ | ||
+ | with $ | D | = k $. | ||
+ | Then $ D $ | ||
+ | is called a $ ( v,k, \lambda ) $- | ||
+ | difference set of order $ n = k - \lambda $ | ||
+ | in $ G $ | ||
+ | if every element $ g \neq 1 $ | ||
+ | in $ G $ | ||
+ | has exactly $ \lambda $ | ||
+ | different representations $ g = d \cdot d ^ {\prime - 1 } $ | ||
+ | with $ d,d ^ \prime \in D $, | ||
+ | see [[#References|[a1]]]. For instance, $ \{ 1,2,4 \} $ | ||
+ | is a $ ( 7,3,1 ) $- | ||
+ | difference set in the [[Cyclic group|cyclic group]] of order $ 7 $. | ||
+ | If $ G $ | ||
+ | is Abelian (cyclic, non-Abelian), the difference set is called Abelian (cyclic, non-Abelian). Two difference sets $ D _ {1} $ | ||
+ | and $ D _ {2} $ | ||
+ | in $ G $ | ||
+ | are equivalent if there is a group [[Automorphism|automorphism]] $ \varphi $ | ||
+ | such that $ \varphi ( D _ {1} ) = D _ {2} g $. | ||
+ | The existence of a $ ( v,k, \lambda ) $- | ||
+ | difference set is equivalent to the existence of a symmetric $ ( v,k, \lambda ) $- | ||
+ | design with $ G $ | ||
+ | acting as a regular automorphism group (cf. also [[Difference set|Difference set]]). If two difference sets correspond to isomorphic designs, the difference sets are called isomorphic. Given certain parameters $ v $, | ||
+ | $ k $ | ||
+ | and $ \lambda $ | ||
+ | and a group $ G $, | ||
+ | the problem is to construct a difference set with those parameters or prove non-existence. To prove non-existence of Abelian difference sets, results from [[Algebraic number theory|algebraic number theory]] are required: The existence of the difference set implies the existence of an [[algebraic integer]] of absolute value $ n $ | ||
+ | in some [[Cyclotomic field|cyclotomic field]]. In several cases one can prove that no such element exists, see [[#References|[a5]]]. Another approach for non-existence results uses multipliers: A multiplier of an Abelian difference set in $ G $ | ||
+ | is an automorphism $ \varphi $ | ||
+ | of $ G $ | ||
+ | such that $ \varphi ( D ) = Dg $. | ||
+ | A statement that certain group automorphisms have to be multipliers of putative difference sets is called a multiplier theorem. It is known, for instance, that the mapping $ g \mapsto g ^ {t} $ | ||
+ | is a multiplier of an Abelian difference set provided that: i) $ t $ | ||
+ | divides the order $ n $; | ||
+ | ii) $ t $ | ||
+ | is relatively prime to $ v $; | ||
+ | and iii) $ t > \lambda $. | ||
+ | Several generalizations of this theorem are known, see [[#References|[a1]]]. | ||
On the existence side, some families of Abelian difference sets are known, see [[#References|[a3]]]. | On the existence side, some families of Abelian difference sets are known, see [[#References|[a3]]]. | ||
Line 6: | Line 58: | ||
The most popular examples are as follows. | The most popular examples are as follows. | ||
− | Cyclic | + | Cyclic $ \left ( { |
+ | \frac{q ^ {d + 1 } - 1 }{q - 1 } | ||
+ | } , { | ||
+ | \frac{q ^ {d} - 1 }{q - 1 } | ||
+ | } , { | ||
+ | \frac{q ^ {d - 1 } - 1 }{q - 1 } | ||
+ | } \right ) $- | ||
+ | difference sets, $ q $ | ||
+ | a prime power. The classical construction of these difference sets (elements in the multiplicative group of $ { \mathop{\rm GF} } ( q ^ {d + 1 } ) $ | ||
+ | whose trace is $ 0 $) | ||
+ | corresponds to the classical point-hyperplane designs of a finite projective space. For non-equivalent cyclic examples with the same parameters, see [[#References|[a5]]]. | ||
− | Quadratic residues in | + | Quadratic residues in $ { \mathop{\rm GF} } ( q ) $, |
+ | $ q \equiv 3 ( { \mathop{\rm mod} } 4 ) $( | ||
+ | Paley difference sets). Some other cyclotomic classes yield difference sets too, see [[#References|[a1]]]. | ||
− | + | $ ( 4m ^ {2} , 2m ^ {2} - m, m ^ {2} - m ) $- | |
+ | difference sets, $ m = 2 ^ {a} 3 ^ {b} u ^ {2} $, | ||
+ | where $ u $ | ||
+ | is a product of odd prime numbers (Hadamard difference sets, [[#References|[a2]]]). If $ m = 2 ^ {a} $, | ||
+ | it is known that an Abelian Hadamard difference set exists if and only if the exponent of $ G $ | ||
+ | is at most $ 2 ^ {a + 2 } $, | ||
+ | see [[#References|[a4]]]. | ||
− | + | $ \left ( 4m ^ {2n } \cdot { | |
+ | \frac{m ^ {2n } - 1 }{m ^ {2} - 1 } | ||
+ | } , m ^ {2n - 1 } \cdot \left ( { | ||
+ | \frac{2 ( m ^ {2n } - 1 ) }{m + 1 } | ||
+ | } + 1 \right ) , \right . $ | ||
+ | $ \left . ( m ^ {2n } - m ^ {2n - 1 } ) \cdot { | ||
+ | \frac{m ^ {2n - 1 } + 1 }{m + 1 } | ||
+ | } \right ) $- | ||
+ | difference sets, where $ m = q ^ {2} $( | ||
+ | $ q $ | ||
+ | an odd prime power) or $ m = 3 ^ {t} $ | ||
+ | or $ m =2 $( | ||
+ | generalized Hadamard difference sets, [[#References|[a2]]]). | ||
− | + | $ \left ( q ^ {d + 1 } \left ( 1 + { | |
+ | \frac{q ^ {d + 1 } - 1 }{q - 1 } | ||
+ | } \right ) , q ^ {d} \cdot { | ||
+ | \frac{q ^ {d + 1 } - 1 }{q - 1 } | ||
+ | } , q ^ {d} \cdot { | ||
+ | \frac{q ^ {d} - 1 }{q - 1 } | ||
+ | } \right ) $- | ||
+ | difference sets, $ q $ | ||
+ | a prime power (McFarland difference sets). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> Y.Q. Chen, "On the existence of abelian Hadamard difference sets and generalized Hadamard difference sets" ''Finite Fields and Appl.'' (to appear)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Jungnickel, A. Pott, "Difference sets: Abelian" Ch.J. Colbourn (ed.) J.H. Dinitz (ed.) , ''CRC Handbook of Combinatorial Designs'' , CRC (1996) pp. 297–307</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.G. Kraemer, "Proof of a conjecture on Hadamard | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> Y.Q. Chen, "On the existence of abelian Hadamard difference sets and generalized Hadamard difference sets" ''Finite Fields and Appl.'' (to appear)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Jungnickel, A. Pott, "Difference sets: Abelian" Ch.J. Colbourn (ed.) J.H. Dinitz (ed.) , ''CRC Handbook of Combinatorial Designs'' , CRC (1996) pp. 297–307</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> R.G. Kraemer, "Proof of a conjecture on Hadamard $2$-groups" ''J. Combinatorial Th. A'' , '''63''' (1993) pp. 1–10</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Pott, "Finite geometry and character theory" , ''Lecture Notes in Mathematics'' , '''1601''' , Springer (1995)</TD></TR> | ||
+ | </table> |
Latest revision as of 06:20, 26 March 2023
Let $ G $
be a group of order $ v $
and $ D \subseteq G $
with $ | D | = k $.
Then $ D $
is called a $ ( v,k, \lambda ) $-
difference set of order $ n = k - \lambda $
in $ G $
if every element $ g \neq 1 $
in $ G $
has exactly $ \lambda $
different representations $ g = d \cdot d ^ {\prime - 1 } $
with $ d,d ^ \prime \in D $,
see [a1]. For instance, $ \{ 1,2,4 \} $
is a $ ( 7,3,1 ) $-
difference set in the cyclic group of order $ 7 $.
If $ G $
is Abelian (cyclic, non-Abelian), the difference set is called Abelian (cyclic, non-Abelian). Two difference sets $ D _ {1} $
and $ D _ {2} $
in $ G $
are equivalent if there is a group automorphism $ \varphi $
such that $ \varphi ( D _ {1} ) = D _ {2} g $.
The existence of a $ ( v,k, \lambda ) $-
difference set is equivalent to the existence of a symmetric $ ( v,k, \lambda ) $-
design with $ G $
acting as a regular automorphism group (cf. also Difference set). If two difference sets correspond to isomorphic designs, the difference sets are called isomorphic. Given certain parameters $ v $,
$ k $
and $ \lambda $
and a group $ G $,
the problem is to construct a difference set with those parameters or prove non-existence. To prove non-existence of Abelian difference sets, results from algebraic number theory are required: The existence of the difference set implies the existence of an algebraic integer of absolute value $ n $
in some cyclotomic field. In several cases one can prove that no such element exists, see [a5]. Another approach for non-existence results uses multipliers: A multiplier of an Abelian difference set in $ G $
is an automorphism $ \varphi $
of $ G $
such that $ \varphi ( D ) = Dg $.
A statement that certain group automorphisms have to be multipliers of putative difference sets is called a multiplier theorem. It is known, for instance, that the mapping $ g \mapsto g ^ {t} $
is a multiplier of an Abelian difference set provided that: i) $ t $
divides the order $ n $;
ii) $ t $
is relatively prime to $ v $;
and iii) $ t > \lambda $.
Several generalizations of this theorem are known, see [a1].
On the existence side, some families of Abelian difference sets are known, see [a3].
Examples.
The most popular examples are as follows.
Cyclic $ \left ( { \frac{q ^ {d + 1 } - 1 }{q - 1 } } , { \frac{q ^ {d} - 1 }{q - 1 } } , { \frac{q ^ {d - 1 } - 1 }{q - 1 } } \right ) $- difference sets, $ q $ a prime power. The classical construction of these difference sets (elements in the multiplicative group of $ { \mathop{\rm GF} } ( q ^ {d + 1 } ) $ whose trace is $ 0 $) corresponds to the classical point-hyperplane designs of a finite projective space. For non-equivalent cyclic examples with the same parameters, see [a5].
Quadratic residues in $ { \mathop{\rm GF} } ( q ) $, $ q \equiv 3 ( { \mathop{\rm mod} } 4 ) $( Paley difference sets). Some other cyclotomic classes yield difference sets too, see [a1].
$ ( 4m ^ {2} , 2m ^ {2} - m, m ^ {2} - m ) $- difference sets, $ m = 2 ^ {a} 3 ^ {b} u ^ {2} $, where $ u $ is a product of odd prime numbers (Hadamard difference sets, [a2]). If $ m = 2 ^ {a} $, it is known that an Abelian Hadamard difference set exists if and only if the exponent of $ G $ is at most $ 2 ^ {a + 2 } $, see [a4].
$ \left ( 4m ^ {2n } \cdot { \frac{m ^ {2n } - 1 }{m ^ {2} - 1 } } , m ^ {2n - 1 } \cdot \left ( { \frac{2 ( m ^ {2n } - 1 ) }{m + 1 } } + 1 \right ) , \right . $ $ \left . ( m ^ {2n } - m ^ {2n - 1 } ) \cdot { \frac{m ^ {2n - 1 } + 1 }{m + 1 } } \right ) $- difference sets, where $ m = q ^ {2} $( $ q $ an odd prime power) or $ m = 3 ^ {t} $ or $ m =2 $( generalized Hadamard difference sets, [a2]).
$ \left ( q ^ {d + 1 } \left ( 1 + { \frac{q ^ {d + 1 } - 1 }{q - 1 } } \right ) , q ^ {d} \cdot { \frac{q ^ {d + 1 } - 1 }{q - 1 } } , q ^ {d} \cdot { \frac{q ^ {d} - 1 }{q - 1 } } \right ) $- difference sets, $ q $ a prime power (McFarland difference sets).
References
[a1] | T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986) |
[a2] | Y.Q. Chen, "On the existence of abelian Hadamard difference sets and generalized Hadamard difference sets" Finite Fields and Appl. (to appear) |
[a3] | D. Jungnickel, A. Pott, "Difference sets: Abelian" Ch.J. Colbourn (ed.) J.H. Dinitz (ed.) , CRC Handbook of Combinatorial Designs , CRC (1996) pp. 297–307 |
[a4] | R.G. Kraemer, "Proof of a conjecture on Hadamard $2$-groups" J. Combinatorial Th. A , 63 (1993) pp. 1–10 |
[a5] | A. Pott, "Finite geometry and character theory" , Lecture Notes in Mathematics , 1601 , Springer (1995) |
Abelian difference set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abelian_difference_set&oldid=39966