Difference between revisions of "Plancherel theorem"
(Importing text file) |
m (details) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0727701.png | ||
+ | $#A+1 = 45 n = 0 | ||
+ | $#C+1 = 45 : ~/encyclopedia/old_files/data/P072/P.0702770 Plancherel theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | For any square-summable function $ f \in L _ {2} (- \infty , + \infty ) $ | |
+ | the integral | ||
− | + | $$ | |
+ | \widehat{f} _ \omega ( x) = | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | \int\limits _ {- \omega } ^ { {+ } \omega } | ||
+ | f( y) e ^ {-} ixy dy | ||
+ | $$ | ||
− | + | converges in $ L _ {2} $ | |
+ | to some function $ \widehat{f} \in L _ {2} $ | ||
+ | as $ \omega \rightarrow \infty $, | ||
+ | i.e. | ||
− | + | \begin{equation} \label{e:1} | |
+ | \lim\limits _ {\omega \rightarrow \infty } \int\limits _ {- \infty } ^ { {+ } \infty } | \widehat{f} ( x) - \widehat{f} _ \omega ( x) | ^ {2} dx = 0. | ||
+ | \end{equation} | ||
− | as | + | Here the function $ f $ |
+ | itself is representable as the limit in $ L _ {2} $ | ||
+ | of the integrals | ||
− | + | $$ | |
+ | f _ \eta ( x) = | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | \int\limits _ {- \eta } ^ { {+ } \eta } \widehat{f} ( y) | ||
+ | e ^ {ixy} dy,\ \eta > 0, | ||
+ | $$ | ||
+ | |||
+ | as $ \eta \rightarrow \infty $, | ||
+ | i.e. | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {\eta \rightarrow \infty } \int\limits _ {- \infty } ^ \infty | ||
+ | | f( x) - f _ \eta ( x) | ^ {2} dx = 0. | ||
+ | $$ | ||
Also, the following relation holds: | Also, the following relation holds: | ||
− | + | $$ | |
+ | \int\limits _ {- \infty } ^ { {+ } \infty } | f( x) | ^ {2} dx = \int\limits _ {- \infty } ^ { {+ } \infty } | | ||
+ | \widehat{f} ( \lambda ) | ^ {2} d \lambda | ||
+ | $$ | ||
(the Parseval–Plancherel formula). | (the Parseval–Plancherel formula). | ||
Line 23: | Line 60: | ||
The function | The function | ||
− | + | $$ | |
+ | \widehat{f} ( x) = \lim\limits _ {\omega \rightarrow \infty } | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | \int\limits _ {- | ||
+ | \omega } ^ { {+ } \omega } f( y) e ^ {-} iyx dy, | ||
+ | $$ | ||
− | where the limit is understood in the sense of convergence in | + | where the limit is understood in the sense of convergence in $L_{2}$ (as in \eqref{e:1}), is called the [[Fourier transform|Fourier transform]] of $f$; |
+ | it is sometimes denoted by the symbolic formula: | ||
− | + | $$ \tag{2 } | |
+ | \widehat{f} ( x) = | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | \int\limits _ {- \infty } ^ { {+ } \infty } f( y) e ^ {-} ixy dy , | ||
+ | $$ | ||
− | where the integral in (2) must be understood in the sense of the principal value at | + | where the integral in (2) must be understood in the sense of the principal value at $ \infty $ |
+ | in the metric of $ L _ {2} $. | ||
+ | One similarly interprets the equation | ||
− | + | $$ \tag{3 } | |
+ | f( x) = | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | \int\limits _ {- \infty } ^ { {+ } \infty } \widetilde{f} ( y) e ^ {ixy} | ||
+ | dy. | ||
+ | $$ | ||
− | For functions | + | For functions $ f \in L _ {2} $, |
+ | the integrals (2) and (3) exist in the sense of the principal value for almost all $ x $. | ||
− | The functions | + | The functions $ f $ |
+ | and $ \widehat{f} $ | ||
+ | also satisfy the following equations for almost-all $ x $: | ||
− | + | $$ | |
+ | \widehat{f} ( x) = | ||
+ | \frac{d}{dx} | ||
+ | \left \{ | ||
+ | \frac{1}{\sqrt {2 \pi } } | ||
+ | \int\limits _ {- \infty } ^ { {+ } | ||
+ | \infty } f( y) | ||
+ | \frac{e ^ {-} ixy - 1 }{-} | ||
+ | iy dy \right \} , | ||
+ | $$ | ||
− | + | $$ | |
+ | f( x) = | ||
+ | \frac{d}{dx} | ||
+ | \left \{ | ||
+ | \frac{1}{\sqrt {2 \pi | ||
+ | } } | ||
+ | \int\limits _ {- \infty } ^ { {+ } \infty } \widehat{f} ( y) | ||
+ | \frac{e ^ {ixy} - 1 }{iy} | ||
+ | dy \right \} . | ||
+ | $$ | ||
− | If Fourier transformation is denoted by | + | If Fourier transformation is denoted by $ {\mathcal F} $ |
+ | and if $ {\mathcal F} ^ {-} 1 $ | ||
+ | denotes the inverse, then Plancherel's theorem can be rephrased as follows: $ {\mathcal F} $ | ||
+ | and $ {\mathcal F} ^ {-} 1 $ | ||
+ | are mutually-inverse unitary operators on $ L _ {2} $( | ||
+ | cf. [[Unitary operator|Unitary operator]]). | ||
The theorem was established by M. Plancherel (1910). | The theorem was established by M. Plancherel (1910). | ||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The heart of Plancherel's theorem is the assertion that if | + | The heart of Plancherel's theorem is the assertion that if $ f \in L _ {1} ( \mathbf R ) \cap L _ {2} ( \mathbf R ) $, |
+ | then: a) $ \widehat{f} \in L _ {2} ( \mathbf R ) $, | ||
+ | where $ \widehat{f} ( y) $ | ||
+ | is defined by (2) for $ y \in \mathbf R $; | ||
+ | b) $ \| \widehat{f} \| _ {2} = \| f \| _ {2} $; | ||
+ | and c) the set of all such $ \widehat{f} $ | ||
+ | is dense in $ L _ {2} ( \mathbf R ) $. | ||
+ | Then one extends this mapping $ f \rightarrow \widehat{f} $ | ||
+ | to a unitary mapping $ {\mathcal F} $ | ||
+ | of $ L _ {2} ( \mathbf R ) $ | ||
+ | onto itself which satisfies $ ( {\mathcal F} ^ {-} 1 f ) ( y) = ( {\mathcal F} f )(- y) $ | ||
+ | for almost every $ y \in \mathbf R $. | ||
+ | There are generalizations of Plancherel's theorem in which $ \mathbf R $ | ||
+ | is replaced by $ \mathbf R ^ {n} $ | ||
+ | or by any locally compact Abelian group. Cf. also [[Harmonic analysis, abstract|Harmonic analysis, abstract]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Fourier analysis on groups" , Wiley (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , '''1–2''' , Springer (1979)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Reiter, "Classical harmonic analysis and locally compact groups" , Oxford Univ. Press (1968)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Fourier analysis on groups" , Wiley (1962) {{ZBL|0107.09603}}</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , '''1–2''' , Springer (1979)</TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Reiter, "Classical harmonic analysis and locally compact groups" , Oxford Univ. Press (1968)</TD></TR></table> |
Latest revision as of 13:19, 20 March 2023
For any square-summable function $ f \in L _ {2} (- \infty , + \infty ) $
the integral
$$ \widehat{f} _ \omega ( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \omega } ^ { {+ } \omega } f( y) e ^ {-} ixy dy $$
converges in $ L _ {2} $ to some function $ \widehat{f} \in L _ {2} $ as $ \omega \rightarrow \infty $, i.e.
\begin{equation} \label{e:1} \lim\limits _ {\omega \rightarrow \infty } \int\limits _ {- \infty } ^ { {+ } \infty } | \widehat{f} ( x) - \widehat{f} _ \omega ( x) | ^ {2} dx = 0. \end{equation}
Here the function $ f $ itself is representable as the limit in $ L _ {2} $ of the integrals
$$ f _ \eta ( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \eta } ^ { {+ } \eta } \widehat{f} ( y) e ^ {ixy} dy,\ \eta > 0, $$
as $ \eta \rightarrow \infty $, i.e.
$$ \lim\limits _ {\eta \rightarrow \infty } \int\limits _ {- \infty } ^ \infty | f( x) - f _ \eta ( x) | ^ {2} dx = 0. $$
Also, the following relation holds:
$$ \int\limits _ {- \infty } ^ { {+ } \infty } | f( x) | ^ {2} dx = \int\limits _ {- \infty } ^ { {+ } \infty } | \widehat{f} ( \lambda ) | ^ {2} d \lambda $$
(the Parseval–Plancherel formula).
The function
$$ \widehat{f} ( x) = \lim\limits _ {\omega \rightarrow \infty } \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \omega } ^ { {+ } \omega } f( y) e ^ {-} iyx dy, $$
where the limit is understood in the sense of convergence in $L_{2}$ (as in \eqref{e:1}), is called the Fourier transform of $f$; it is sometimes denoted by the symbolic formula:
$$ \tag{2 } \widehat{f} ( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } f( y) e ^ {-} ixy dy , $$
where the integral in (2) must be understood in the sense of the principal value at $ \infty $ in the metric of $ L _ {2} $. One similarly interprets the equation
$$ \tag{3 } f( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } \widetilde{f} ( y) e ^ {ixy} dy. $$
For functions $ f \in L _ {2} $, the integrals (2) and (3) exist in the sense of the principal value for almost all $ x $.
The functions $ f $ and $ \widehat{f} $ also satisfy the following equations for almost-all $ x $:
$$ \widehat{f} ( x) = \frac{d}{dx} \left \{ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } f( y) \frac{e ^ {-} ixy - 1 }{-} iy dy \right \} , $$
$$ f( x) = \frac{d}{dx} \left \{ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } \widehat{f} ( y) \frac{e ^ {ixy} - 1 }{iy} dy \right \} . $$
If Fourier transformation is denoted by $ {\mathcal F} $ and if $ {\mathcal F} ^ {-} 1 $ denotes the inverse, then Plancherel's theorem can be rephrased as follows: $ {\mathcal F} $ and $ {\mathcal F} ^ {-} 1 $ are mutually-inverse unitary operators on $ L _ {2} $( cf. Unitary operator).
The theorem was established by M. Plancherel (1910).
Comments
The heart of Plancherel's theorem is the assertion that if $ f \in L _ {1} ( \mathbf R ) \cap L _ {2} ( \mathbf R ) $, then: a) $ \widehat{f} \in L _ {2} ( \mathbf R ) $, where $ \widehat{f} ( y) $ is defined by (2) for $ y \in \mathbf R $; b) $ \| \widehat{f} \| _ {2} = \| f \| _ {2} $; and c) the set of all such $ \widehat{f} $ is dense in $ L _ {2} ( \mathbf R ) $. Then one extends this mapping $ f \rightarrow \widehat{f} $ to a unitary mapping $ {\mathcal F} $ of $ L _ {2} ( \mathbf R ) $ onto itself which satisfies $ ( {\mathcal F} ^ {-} 1 f ) ( y) = ( {\mathcal F} f )(- y) $ for almost every $ y \in \mathbf R $. There are generalizations of Plancherel's theorem in which $ \mathbf R $ is replaced by $ \mathbf R ^ {n} $ or by any locally compact Abelian group. Cf. also Harmonic analysis, abstract.
References
[1] | A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988) |
[2] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
[3] | S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German) |
[a1] | W. Rudin, "Fourier analysis on groups" , Wiley (1962) Zbl 0107.09603 |
[a2] | A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940) |
[a3] | L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) |
[a4] | E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , 1–2 , Springer (1979) |
[a5] | H. Reiter, "Classical harmonic analysis and locally compact groups" , Oxford Univ. Press (1968) |
Plancherel theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Plancherel_theorem&oldid=16182