Difference between revisions of "Harmonic number"
From Encyclopedia of Mathematics
(Start article: Harmonic number) |
|||
Line 19: | Line 19: | ||
* Guy, Richard K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers". Unsolved Problems in Number Theory (2nd ed.). New York: Springer-Verlag (1994). pp. 16, 45–53 | * Guy, Richard K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers". Unsolved Problems in Number Theory (2nd ed.). New York: Springer-Verlag (1994). pp. 16, 45–53 | ||
* Milovanović, Gradimir V., Rassias, Michael Th. (edd.) ''Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava'' Springer (2014) ISBN 149390258X | * Milovanović, Gradimir V., Rassias, Michael Th. (edd.) ''Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava'' Springer (2014) ISBN 149390258X | ||
− | * Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, edd. Handbook of number theory I. Dordrecht: Springer-Verlag (2006). ISBN 1-4020-4215-9. {{ZBL|1151.11300}} | + | * Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, edd. Handbook of number theory I. Dordrecht: Springer-Verlag (2006). {{ISBN|1-4020-4215-9}}. {{ZBL|1151.11300}} |
− | * Sándor, Jozsef; Crstici, Borislav, edd. Handbook of number theory II. Dordrecht: Kluwer Academic (2004). ISBN 1-4020-2546-7. {{ZBL|1079.11001}} | + | * Sándor, Jozsef; Crstici, Borislav, edd. Handbook of number theory II. Dordrecht: Kluwer Academic (2004). {{ISBN|1-4020-2546-7}}. {{ZBL|1079.11001}} |
− | * Wagstaff, Samuel S. ''The Joy of Factoring'' Student mathematical library '''68''' American Mathematical Society (2013) ISBN 1470410486 | + | * Wagstaff, Samuel S. ''The Joy of Factoring'' Student mathematical library '''68''' American Mathematical Society (2013) {{ISBN|1470410486}} |
Revision as of 13:09, 19 March 2023
Commonly, a partial sum of the harmonic series
$$
H_n = \sum_{k=1}^n \frac{1}{k} \ .
$$
A generalised harmonic number is a partial num of the zeta function
$$
H_n^{(s)} = \sum_{k=1}^n \frac{1}{k^s} \ .
$$
However, Pomerance has defined a harmonic number to be a natural number $n$ for which the harmonic mean of the divisors of $n$ is an integer; equivalently $\sigma(n)$ divides $n.d(n)$ where $\sigma(n)$ is the sum of the divisors of $n$ and $d(n)$ is the number of divisors: these are also called Øre numbers. The first seven such numbers are $$ 1,\ 6,\ 28,\ 140,\ 270,\ 496,\ 672 \ . $$ An even perfect number is a harmonic number.
References
- Guy, Richard K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers". Unsolved Problems in Number Theory (2nd ed.). New York: Springer-Verlag (1994). pp. 16, 45–53
- Milovanović, Gradimir V., Rassias, Michael Th. (edd.) Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava Springer (2014) ISBN 149390258X
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, edd. Handbook of number theory I. Dordrecht: Springer-Verlag (2006). ISBN 1-4020-4215-9. Zbl 1151.11300
- Sándor, Jozsef; Crstici, Borislav, edd. Handbook of number theory II. Dordrecht: Kluwer Academic (2004). ISBN 1-4020-2546-7. Zbl 1079.11001
- Wagstaff, Samuel S. The Joy of Factoring Student mathematical library 68 American Mathematical Society (2013) ISBN 1470410486
How to Cite This Entry:
Harmonic number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_number&oldid=51447
Harmonic number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_number&oldid=51447