Difference between revisions of "Hurwitz zeta function"
From Encyclopedia of Mathematics
(Start article: Hurwitz zeta function) |
|||
Line 11: | Line 11: | ||
==References== | ==References== | ||
− | * Tom M. Apostol, "Introduction to Analytic Number Theory", Undergraduate Texts in Mathematics, Springer (1976) ISBN 0-387-90163-9 {{ZBL|0335.10001}} | + | * Tom M. Apostol, "Introduction to Analytic Number Theory", Undergraduate Texts in Mathematics, Springer (1976) {{ISBN|0-387-90163-9}} {{ZBL|0335.10001}} |
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 09:28, 19 March 2023
generalised zeta function
An Dirichlet series related to the Riemann zeta function which may be used to exhibit properties of various Dirichlet L-functions.
The Hurwitz zeta function $\zeta(\alpha,s)$ is defined for real $\alpha$, $0 < \alpha \le 1$ as $$ \zeta(\alpha,s) = \sum_{n=0}^\infty (n+\alpha)^{-s} \ . $$ The series is convergent, and defines an analytic function, for $\Re s > 1$. The function possesses an analytic continuation to the whole $s$-plane except for a simple pole of residue 1 at $s=1$.
References
- Tom M. Apostol, "Introduction to Analytic Number Theory", Undergraduate Texts in Mathematics, Springer (1976) ISBN 0-387-90163-9 Zbl 0335.10001
How to Cite This Entry:
Hurwitz zeta function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hurwitz_zeta_function&oldid=38980
Hurwitz zeta function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hurwitz_zeta_function&oldid=38980