Difference between revisions of "Hadamard matrix"
(Importing text file) |
m (→References: + ZBL link) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0460801.png | ||
+ | $#A+1 = 49 n = 0 | ||
+ | $#C+1 = 49 : ~/encyclopedia/old_files/data/H046/H.0406080 Hadamard matrix | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A square matrix $ H = \| h _ {ij} \| $ | |
+ | of order $ n $, | ||
+ | with entries $ + 1 $ | ||
+ | or $ - 1 $, | ||
+ | such that the equation | ||
− | + | $$ \tag{* } | |
+ | HH ^ {T} = n I _ {n} $$ | ||
+ | |||
+ | holds, where $ H ^ {T} $ | ||
+ | is the transposed matrix of $ H $ | ||
+ | and $ I _ {n} $ | ||
+ | is the unit matrix of order $ n $. | ||
+ | Equality (*) is equivalent to saying that any two rows of $ H $ | ||
+ | are orthogonal. Hadamard matrices have been named after J. Hadamard who showed [[#References|[1]]] that the determinant $ | A | $ | ||
+ | of a matrix $ A = \| a _ {ij} \| $ | ||
+ | of order $ n $, | ||
+ | with complex entries, satisfies the Hadamard inequality | ||
+ | |||
+ | $$ | ||
+ | | A | ^ {2} \leq \prod _ { i= 1} ^ { n } s _ {ii} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | s _ {ik} = \sum _ {j = 1 } ^ { n } | ||
+ | a _ {ij} \overline{ {a _ {kj} }}\; , | ||
+ | $$ | ||
− | and | + | and $ \overline{ {a _ {kj} }}\; $ |
+ | is the element conjugate to $ a _ {kj} $( | ||
+ | cf. [[Hadamard theorem|Hadamard theorem]] on determinants). In particular, if $ | a _ {ij} | \leq M $, | ||
+ | then $ | A | \leq M ^ {n} n ^ {n/2} $. | ||
+ | It follows that a Hadamard matrix is a square matrix consisting of $ \pm 1 $' | ||
+ | s with maximal absolute value $ n ^ {n/2} $ | ||
+ | of the determinant. The properties of Hadamard matrices are: 1) $ HH ^ {T} = nI _ {n} $ | ||
+ | implies $ H ^ {T} H = nI _ {n} $ | ||
+ | and vice versa; 2) transposition of rows or columns and multiplication of the elements of an arbitrary row or column by $ - 1 $ | ||
+ | again yields a Hadamard matrix; 3) the tensor product of two Hadamard matrices is also a Hadamard matrix, of order equal to the product of the orders of the factors. In other words, if $ A = \| a _ {ij} \| $ | ||
+ | and $ B = \| b _ {ij} \| $ | ||
+ | are Hadamard matrices of orders $ m $ | ||
+ | and $ n $ | ||
+ | respectively, then $ C = \| a _ {ij} B \| $ | ||
+ | is a Hadamard matrix of order $ mn $. | ||
+ | A Hadamard matrix with its first row and first column consisting only of $ + 1 $ | ||
+ | terms is said to be normalized. The order of a Hadamard matrix is $ n = 1, 2 $ | ||
+ | or $ n \equiv 0 $( | ||
+ | $ \mathop{\rm mod} 4 $). | ||
+ | The normalized Hadamard matrices of orders 1 and 2 are: | ||
− | + | $$ | |
+ | [ 1],\ \ | ||
+ | \left [ | ||
− | + | \begin{array}{cr} | |
+ | 1 & 1 \\ | ||
+ | 1 &- 1 \\ | ||
+ | \end{array} | ||
− | + | \right ] . | |
+ | $$ | ||
− | + | The existence of a Hadamard matrix has been demonstrated for several classes of values of $ n $( | |
+ | see, for example, [[#References|[2]]], [[#References|[3]]]). At the time of writing (the 1980s), it has not yet been proved that a Hadamard matrix exists for any $ n \equiv 0 $( | ||
+ | $ \mathop{\rm mod} 4 $). | ||
+ | For methods of constructing Hadamard matrices see [[#References|[2]]]. Hadamard matrices are used in the construction of certain types of block designs [[#References|[2]]] and codes [[#References|[3]]] (cf. [[Block design|Block design]]; [[Code|Code]]). A Hadamard matrix of order $ n = 4t $ | ||
+ | is equivalent to a $ ( 4t - 1, 2t - 1, t - 1 ) $- | ||
+ | design. | ||
− | + | A generalized Hadamard matrix is a square matrix $ H ( p, h) $ | |
+ | of order $ h $, | ||
+ | with as entries $ p $- | ||
+ | th roots of unity, which satisfies the equality | ||
− | + | $$ | |
− | + | HH ^ {cT} = h I _ {h} , | |
+ | $$ | ||
+ | where $ H ^ {cT} $ | ||
+ | is the conjugate transpose of the matrix $ H $ | ||
+ | and $ I _ {h} $ | ||
+ | is the unit matrix of order $ h $. | ||
+ | Generalized Hadamard matrices have properties analogous to 1) and 3) (cf. [[#References|[4]]]). | ||
+ | ====References==== | ||
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> J. Hadamard, "Résolution d'une question relative aux déterminants" ''Bull. Sci. Math. (2)'' , '''17''' (1893) pp. 240–246 {{ZBL|25.0221.02}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> M. Hall, "Combinatorial theory" , Blaisdell (1967) pp. Chapt. 14</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> W.W. Peterson, "Error-correcting codes" , M.I.T. & Wiley (1961)</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> A.T. Butson, "Generalized Hadamard matrices" ''Proc. Amer. Math. Soc.'' , '''13''' (1962) pp. 894–898</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | Hadamard matrices are equivalent to so-called Hadamard | + | Hadamard matrices are equivalent to so-called Hadamard $ 2 $- |
+ | designs; they are also important in statistical applications [[#References|[a6]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W.D. Wallis, A.P. Street, J.S. Wallis, "Combinatorics: room squares, sum-free sets, Hadamard matrices" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D.R. Hughes, F.C. Piper, "Design theory" , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> F.J. MacWilliams, N.J.A. Sloane, "The theory of error-correcting codes" , '''I-II''' , North-Holland (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S.S. Agaian, "Hadamard matrices and their applications" , ''Lect. notes in math.'' , '''1168''' , Springer (1985)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Hedayat, W.D. Wallis, "Hadamard matrices and their applications" ''Ann. Stat.'' , '''6''' (1978) pp. 1184–1238</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W.D. Wallis, A.P. Street, J.S. Wallis, "Combinatorics: room squares, sum-free sets, Hadamard matrices" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D.R. Hughes, F.C. Piper, "Design theory" , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> F.J. MacWilliams, N.J.A. Sloane, "The theory of error-correcting codes" , '''I-II''' , North-Holland (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S.S. Agaian, "Hadamard matrices and their applications" , ''Lect. notes in math.'' , '''1168''' , Springer (1985)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Hedayat, W.D. Wallis, "Hadamard matrices and their applications" ''Ann. Stat.'' , '''6''' (1978) pp. 1184–1238</TD></TR></table> |
Latest revision as of 11:01, 17 March 2023
A square matrix $ H = \| h _ {ij} \| $
of order $ n $,
with entries $ + 1 $
or $ - 1 $,
such that the equation
$$ \tag{* } HH ^ {T} = n I _ {n} $$
holds, where $ H ^ {T} $ is the transposed matrix of $ H $ and $ I _ {n} $ is the unit matrix of order $ n $. Equality (*) is equivalent to saying that any two rows of $ H $ are orthogonal. Hadamard matrices have been named after J. Hadamard who showed [1] that the determinant $ | A | $ of a matrix $ A = \| a _ {ij} \| $ of order $ n $, with complex entries, satisfies the Hadamard inequality
$$ | A | ^ {2} \leq \prod _ { i= 1} ^ { n } s _ {ii} , $$
where
$$ s _ {ik} = \sum _ {j = 1 } ^ { n } a _ {ij} \overline{ {a _ {kj} }}\; , $$
and $ \overline{ {a _ {kj} }}\; $ is the element conjugate to $ a _ {kj} $( cf. Hadamard theorem on determinants). In particular, if $ | a _ {ij} | \leq M $, then $ | A | \leq M ^ {n} n ^ {n/2} $. It follows that a Hadamard matrix is a square matrix consisting of $ \pm 1 $' s with maximal absolute value $ n ^ {n/2} $ of the determinant. The properties of Hadamard matrices are: 1) $ HH ^ {T} = nI _ {n} $ implies $ H ^ {T} H = nI _ {n} $ and vice versa; 2) transposition of rows or columns and multiplication of the elements of an arbitrary row or column by $ - 1 $ again yields a Hadamard matrix; 3) the tensor product of two Hadamard matrices is also a Hadamard matrix, of order equal to the product of the orders of the factors. In other words, if $ A = \| a _ {ij} \| $ and $ B = \| b _ {ij} \| $ are Hadamard matrices of orders $ m $ and $ n $ respectively, then $ C = \| a _ {ij} B \| $ is a Hadamard matrix of order $ mn $. A Hadamard matrix with its first row and first column consisting only of $ + 1 $ terms is said to be normalized. The order of a Hadamard matrix is $ n = 1, 2 $ or $ n \equiv 0 $( $ \mathop{\rm mod} 4 $). The normalized Hadamard matrices of orders 1 and 2 are:
$$ [ 1],\ \ \left [ \begin{array}{cr} 1 & 1 \\ 1 &- 1 \\ \end{array} \right ] . $$
The existence of a Hadamard matrix has been demonstrated for several classes of values of $ n $( see, for example, [2], [3]). At the time of writing (the 1980s), it has not yet been proved that a Hadamard matrix exists for any $ n \equiv 0 $( $ \mathop{\rm mod} 4 $). For methods of constructing Hadamard matrices see [2]. Hadamard matrices are used in the construction of certain types of block designs [2] and codes [3] (cf. Block design; Code). A Hadamard matrix of order $ n = 4t $ is equivalent to a $ ( 4t - 1, 2t - 1, t - 1 ) $- design.
A generalized Hadamard matrix is a square matrix $ H ( p, h) $ of order $ h $, with as entries $ p $- th roots of unity, which satisfies the equality
$$ HH ^ {cT} = h I _ {h} , $$
where $ H ^ {cT} $ is the conjugate transpose of the matrix $ H $ and $ I _ {h} $ is the unit matrix of order $ h $. Generalized Hadamard matrices have properties analogous to 1) and 3) (cf. [4]).
References
[1] | J. Hadamard, "Résolution d'une question relative aux déterminants" Bull. Sci. Math. (2) , 17 (1893) pp. 240–246 Zbl 25.0221.02 |
[2] | M. Hall, "Combinatorial theory" , Blaisdell (1967) pp. Chapt. 14 |
[3] | W.W. Peterson, "Error-correcting codes" , M.I.T. & Wiley (1961) |
[4] | A.T. Butson, "Generalized Hadamard matrices" Proc. Amer. Math. Soc. , 13 (1962) pp. 894–898 |
Comments
Hadamard matrices are equivalent to so-called Hadamard $ 2 $- designs; they are also important in statistical applications [a6].
References
[a1] | W.D. Wallis, A.P. Street, J.S. Wallis, "Combinatorics: room squares, sum-free sets, Hadamard matrices" , Springer (1972) |
[a2] | D.R. Hughes, F.C. Piper, "Design theory" , Cambridge Univ. Press (1988) |
[a3] | F.J. MacWilliams, N.J.A. Sloane, "The theory of error-correcting codes" , I-II , North-Holland (1977) |
[a4] | S.S. Agaian, "Hadamard matrices and their applications" , Lect. notes in math. , 1168 , Springer (1985) |
[a5] | T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986) |
[a6] | A. Hedayat, W.D. Wallis, "Hadamard matrices and their applications" Ann. Stat. , 6 (1978) pp. 1184–1238 |
Hadamard matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hadamard_matrix&oldid=18136