Namespaces
Variants
Actions

Difference between revisions of "Generalized function, derivative of a"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (fixing space)
m (fixing mathcal)
Line 12: Line 12:
  
 
A weak extension of the operation of ordinary [[Differentiation|differentiation]]. Let  $  f $
 
A weak extension of the operation of ordinary [[Differentiation|differentiation]]. Let  $  f $
be a [[Generalized function|generalized function]],  $  f \in D  ^  \prime  ( O) $.  
+
be a [[Generalized function|generalized function]],  $  f \in \mathcal D  ^  \prime  ( O) $.  
 
The generalized (weak) derivative
 
The generalized (weak) derivative
  
Line 38: Line 38:
 
into  $  D ( O) $,  
 
into  $  D ( O) $,  
 
the functional  $  D  ^  \alpha  f $
 
the functional  $  D  ^  \alpha  f $
defined by the right-hand side of (*) is a generalized function in  $ D  ^  \prime  ( O) $.  
+
defined by the right-hand side of (*) is a generalized function in  $ \mathcal D  ^  \prime  ( O) $.  
 
If  $  f \in C  ^ {p} ( O) $,  
 
If  $  f \in C  ^ {p} ( O) $,  
 
then  $  D  ^  \alpha  f \in C ^ {p - | \alpha | } ( O) $
 
then  $  D  ^  \alpha  f \in C ^ {p - | \alpha | } ( O) $
Line 44: Line 44:
 
with  $  | \alpha | \leq  p $.
 
with  $  | \alpha | \leq  p $.
  
The following properties hold for the derivatives of a generalized function: the operation  $  f \mapsto D  ^  \alpha  f $
+
The following properties hold for the derivatives of a generalized function: the operation  $  f \mapsto \mathcal D  ^  \alpha  f $
is linear and continuous from  $  D  ^  \prime  ( O) $
+
is linear and continuous from  $  \mathcal D  ^  \prime  ( O) $
into  $ D  ^  \prime  ( O) $;  
+
into  $ \mathcal D  ^  \prime  ( O) $;  
any generalized function in  $ D  ^  \prime  ( O) $
+
any generalized function in  $ \mathcal D  ^  \prime  ( O) $
 
is infinitely differentiable (in the generalized sense); the result of differentiation does not depend on the order; the [[Leibniz formula|Leibniz formula]] is valid for the differentiation of a product  $  af $,  
 
is infinitely differentiable (in the generalized sense); the result of differentiation does not depend on the order; the [[Leibniz formula|Leibniz formula]] is valid for the differentiation of a product  $  af $,  
 
when  $  a \in C  ^  \infty  ( O) $;  
 
when  $  a \in C  ^  \infty  ( O) $;  
Line 64: Line 64:
  
 
2) The general solution of the equation  $  u  ^  \prime  = 0 $
 
2) The general solution of the equation  $  u  ^  \prime  = 0 $
in the class  $  D  ^  \prime  $
+
in the class  $  \mathcal D  ^  \prime  $
 
is an arbitrary constant.
 
is an arbitrary constant.
  
Line 74: Line 74:
 
$$
 
$$
  
converges in  $ D  ^  \prime  $
+
converges in  $ \mathcal D  ^  \prime  $
and it can be differentiated term-by-term in  $ D  ^  \prime  $
+
and it can be differentiated term-by-term in  $ \mathcal D  ^  \prime  $
 
infinitely many times.
 
infinitely many times.
  

Revision as of 08:03, 25 April 2022


A weak extension of the operation of ordinary differentiation. Let $ f $ be a generalized function, $ f \in \mathcal D ^ \prime ( O) $. The generalized (weak) derivative

$$ D ^ \alpha f = \ \frac{\partial ^ {| \alpha | } f }{\partial x _ {1} ^ {\alpha _ {1} } \dots \partial x _ {n} ^ {\alpha _ {n} } } ,\ \ | \alpha | = \alpha _ {1} + \dots + \alpha _ {n} , $$

of order $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $ is defined by the equation

$$ \tag{* } ( D ^ \alpha f , \phi ) = \ ( - 1 ) ^ {| \alpha | } ( f , D ^ \alpha \phi ) ,\ \ \phi \in D ( O) . $$

Since the operation $ \phi \mapsto (- 1) ^ {| \alpha | } D ^ \alpha \phi $ is linear and continuous from $ D ( O) $ into $ D ( O) $, the functional $ D ^ \alpha f $ defined by the right-hand side of (*) is a generalized function in $ \mathcal D ^ \prime ( O) $. If $ f \in C ^ {p} ( O) $, then $ D ^ \alpha f \in C ^ {p - | \alpha | } ( O) $ for all $ \alpha $ with $ | \alpha | \leq p $.

The following properties hold for the derivatives of a generalized function: the operation $ f \mapsto \mathcal D ^ \alpha f $ is linear and continuous from $ \mathcal D ^ \prime ( O) $ into $ \mathcal D ^ \prime ( O) $; any generalized function in $ \mathcal D ^ \prime ( O) $ is infinitely differentiable (in the generalized sense); the result of differentiation does not depend on the order; the Leibniz formula is valid for the differentiation of a product $ af $, when $ a \in C ^ \infty ( O) $; and $ \supp D ^ \alpha f \subset \supp f $.

Let $ f \in L _ { \mathop{\rm loc} } ^ {1} ( O) $. It may happen that a certain generalized derivative can be identified with some $ L _ { \mathop{\rm loc} } ^ {1} ( O) $-function. In this case $ D ^ \alpha f ( x) $ is a generalized derivative of function type.

Examples.

1) $ \theta ^ \prime = \delta $, where $ \theta $ is the Heaviside function and $ \delta $ is the Dirac function (cf. Delta-function for both).

2) The general solution of the equation $ u ^ \prime = 0 $ in the class $ \mathcal D ^ \prime $ is an arbitrary constant.

3) The trigonometric series

$$ \sum _ {k = - \infty } ^ \infty a _ {k} e ^ {ikx} ,\ \ | a _ {k} | \leq A ( 1 + | k | ) ^ {m} , $$

converges in $ \mathcal D ^ \prime $ and it can be differentiated term-by-term in $ \mathcal D ^ \prime $ infinitely many times.

References

[1] L. Schwartz, "Théorie des distributions" , 1 , Hermann (1950) MR0035918 Zbl 0037.07301
[2] S.L. Sobolev, "Applications of functional analysis in mathematical physics" , Amer. Math. Soc. (1963) (Translated from Russian) MR0165337 Zbl 0123.09003

Comments

References

[a1] K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, Sect. 4; 5 MR0617913 Zbl 0435.46002
[a2] L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983) MR0717035 MR0705278 Zbl 0521.35002 Zbl 0521.35001
How to Cite This Entry:
Generalized function, derivative of a. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Generalized_function,_derivative_of_a&oldid=52281
This article was adapted from an original article by V.S. Vladimirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article