Difference between revisions of "Lebesgue function"
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0578401.png | ||
+ | $#A+1 = 10 n = 0 | ||
+ | $#C+1 = 10 : ~/encyclopedia/old_files/data/L057/L.0507840 Lebesgue function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A function | A function | ||
− | + | $$ | |
+ | L _ {n} ^ \Phi ( t) = \int\limits _ { a } ^ { b } | ||
+ | \left | \sum _ { k=1 } ^ { n } \phi _ {k} ( x) \phi _ {k} ( t) \right | d x ,\ t \in [ a , b ] , | ||
+ | $$ | ||
− | where | + | where $ \Phi = \{ \phi _ {k} \} _ {k=1} ^ \infty $ |
+ | is a given system of functions, orthonormal with respect to the Lebesgue measure on the interval , | ||
+ | $ n = 1 , 2 , . . . $. | ||
+ | Lebesgue functions are defined similarly in the case when an orthonormal system is specified on an arbitrary measure space. One has | ||
− | + | $$ | |
+ | L _ {n} ^ \Phi ( t) = \ | ||
+ | \sup _ {f : \| f \| _ {C [ a , b ] } | ||
+ | \leq 1 } | S _ {n} ( f ) | ,\ \ | ||
+ | t \in [ a , b ] , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | S _ {n} ( f ) ( t) = \sum _ { k=1 } ^ { n } | ||
+ | c _ {k} ( f ) \phi _ {k} ( t) | ||
+ | $$ | ||
− | is the | + | is the n -th partial sum of the [[Fourier series|Fourier series]] of f |
+ | with respect to \Phi . | ||
+ | In the case when \Phi | ||
+ | is the [[Trigonometric system|trigonometric system]], the Lebesgue functions are constant and reduce to the [[Lebesgue constants|Lebesgue constants]]. They were introduced by H. Lebesgue. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR></table> |
Latest revision as of 19:29, 28 February 2021
A function
L _ {n} ^ \Phi ( t) = \int\limits _ { a } ^ { b } \left | \sum _ { k=1 } ^ { n } \phi _ {k} ( x) \phi _ {k} ( t) \right | d x ,\ t \in [ a , b ] ,
where \Phi = \{ \phi _ {k} \} _ {k=1} ^ \infty is a given system of functions, orthonormal with respect to the Lebesgue measure on the interval [ a , b ] , n = 1 , 2 , . . . . Lebesgue functions are defined similarly in the case when an orthonormal system is specified on an arbitrary measure space. One has
L _ {n} ^ \Phi ( t) = \ \sup _ {f : \| f \| _ {C [ a , b ] } \leq 1 } | S _ {n} ( f ) | ,\ \ t \in [ a , b ] ,
where
S _ {n} ( f ) ( t) = \sum _ { k=1 } ^ { n } c _ {k} ( f ) \phi _ {k} ( t)
is the n -th partial sum of the Fourier series of f with respect to \Phi . In the case when \Phi is the trigonometric system, the Lebesgue functions are constant and reduce to the Lebesgue constants. They were introduced by H. Lebesgue.
References
[1] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
Lebesgue function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_function&oldid=13866