Difference between revisions of "Wilcoxon test"
(Importing text file) |
(fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0979601.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/W097/W.0907960 Wilcoxon test | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Non-parametric test|non-parametric test]] of the homogeneity of two samples $ X _ {1} \dots X _ {n} $ | |
+ | and $ Y _ {1} \dots Y _ {m} $. | ||
+ | The elements of the samples are assumed to be mutually independent, with continuous distribution functions $ F( x) $ | ||
+ | and $ G( x) $, | ||
+ | respectively. The hypothesis to be tested is $ F( x)= G( x) $. | ||
+ | Wilcoxon's test is based on the [[Rank statistic|rank statistic]] | ||
− | + | $$ \tag{* } | |
+ | W = s ( r _ {1} ) + \dots + s ( r _ {m} ), | ||
+ | $$ | ||
− | where | + | where $ r _ {j} $ |
+ | are the ranks of the random variables $ Y _ {j} $ | ||
+ | in the common series of order statistics of $ X _ {i} $ | ||
+ | and $ Y _ {j} $, | ||
+ | while the function $ s( r) $, | ||
+ | $ r = 1 \dots n + m $, | ||
+ | is defined by a given permutation | ||
+ | |||
+ | $$ | ||
+ | \left( | ||
+ | \begin{array}{cccc} | ||
+ | 1 & 2 & \cdots & m+n \\ | ||
+ | s(1) & s(2) & \cdots & s(m+n) | ||
+ | \end{array} | ||
+ | \right)\ , | ||
+ | $$ | ||
+ | where $ s( 1) \dots s( n+ m) $ | ||
+ | is one of the possible rearrangements of the numbers $ 1 \dots n + m $. | ||
+ | The permutation is chosen so that the power of Wilcoxon's test for the given alternative is highest. The statistical distribution of $ W $ | ||
+ | depends only on the size of the samples and not on the chosen permutation (if the homogeneity hypothesis is true). If $ n \rightarrow \infty $ | ||
+ | and $ m \rightarrow \infty $, | ||
+ | the random variable $ W $ | ||
+ | has an asymptotically-normal distribution. This variant of the test was first proposed by F. Wilcoxon in 1945 for samples of equal sizes and was based on the special case $ s( r) \equiv r $( | ||
+ | cf. [[Rank sum test|Rank sum test]]; [[Mann–Whitney test|Mann–Whitney test]]). See also [[Van der Waerden test|van der Waerden test]]; [[Rank test|Rank test]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Wilcoxon, "Individual comparison by ranking methods" ''Biometrics'' , '''1''' : 6 (1945) pp. 80–83</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR></table> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> F. Wilcoxon, "Individual comparison by ranking methods" ''Biometrics'' , '''1''' : 6 (1945) pp. 80–83</TD></TR> | |
− | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR> | |
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR> | ||
+ | </table> |
Latest revision as of 10:34, 7 February 2021
A non-parametric test of the homogeneity of two samples $ X _ {1} \dots X _ {n} $
and $ Y _ {1} \dots Y _ {m} $.
The elements of the samples are assumed to be mutually independent, with continuous distribution functions $ F( x) $
and $ G( x) $,
respectively. The hypothesis to be tested is $ F( x)= G( x) $.
Wilcoxon's test is based on the rank statistic
$$ \tag{* } W = s ( r _ {1} ) + \dots + s ( r _ {m} ), $$
where $ r _ {j} $ are the ranks of the random variables $ Y _ {j} $ in the common series of order statistics of $ X _ {i} $ and $ Y _ {j} $, while the function $ s( r) $, $ r = 1 \dots n + m $, is defined by a given permutation
$$ \left( \begin{array}{cccc} 1 & 2 & \cdots & m+n \\ s(1) & s(2) & \cdots & s(m+n) \end{array} \right)\ , $$ where $ s( 1) \dots s( n+ m) $ is one of the possible rearrangements of the numbers $ 1 \dots n + m $. The permutation is chosen so that the power of Wilcoxon's test for the given alternative is highest. The statistical distribution of $ W $ depends only on the size of the samples and not on the chosen permutation (if the homogeneity hypothesis is true). If $ n \rightarrow \infty $ and $ m \rightarrow \infty $, the random variable $ W $ has an asymptotically-normal distribution. This variant of the test was first proposed by F. Wilcoxon in 1945 for samples of equal sizes and was based on the special case $ s( r) \equiv r $( cf. Rank sum test; Mann–Whitney test). See also van der Waerden test; Rank test.
References
[1] | F. Wilcoxon, "Individual comparison by ranking methods" Biometrics , 1 : 6 (1945) pp. 80–83 |
[2] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
[3] | B.L. van der Waerden, "Mathematische Statistik" , Springer (1957) |
Comments
References
[a1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
Wilcoxon test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wilcoxon_test&oldid=16296