Namespaces
Variants
Actions

Difference between revisions of "Characteristic function of a set"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (ce)
 
Line 16: Line 16:
 
The function 
 
The function    \chi = \chi _ {E}
 
that is equal to 1 when    x \in E
 
that is equal to 1 when    x \in E
and equal to 0 when  $  x \in CE $(
+
and equal to 0 when  $  x \in \complement E $(
where  $ CE $
+
where  $\complement E $
 
is the complement to    E
 
is the complement to    E
 
in    X ).  
 
in    X ).  
Line 26: Line 26:
 
Properties of characteristic functions are:
 
Properties of characteristic functions are:
  
1)  $  \chi _ {CE} = 1 - \chi _ {E} $,  
+
1)  $  \chi _ {\complement E} = 1 - \chi _ {E} $,  
 
  \chi _ {E \setminus  F }  = \chi _ {E} ( 1 - \chi _ {F} ) ;
 
  \chi _ {E \setminus  F }  = \chi _ {E} ( 1 - \chi _ {F} ) ;
  
Line 48: Line 48:
  
 
====Comments====
 
====Comments====
The characteristic function of a set is also called the indicator function of that set. The symbols    1 _ {E}
+
The characteristic function of a set is also called the indicator function of that set. The symbols  $  \mathbf{1} _ {E} $
 
or    \xi _ {E}
 
or    \xi _ {E}
 
are often used instead of    \chi _ {E} .
 
are often used instead of    \chi _ {E} .

Latest revision as of 18:24, 24 December 2020


E in a space X

The function \chi = \chi _ {E} that is equal to 1 when x \in E and equal to 0 when x \in \complement E ( where \complement E is the complement to E in X ). Every function \chi on X with values in \{ 0, 1 \} is the characteristic function of some set, namely, the set E = \{ {x } : {\chi ( x) = 1 } \} . Properties of characteristic functions are:

1) \chi _ {\complement E} = 1 - \chi _ {E} , \chi _ {E \setminus F } = \chi _ {E} ( 1 - \chi _ {F} ) ;

2) if F \subset E , then \chi _ {E \setminus F } = \chi _ {E} - \chi _ {F} ;

3) if E = \cup _ \alpha E _ \alpha , then \chi _ {E} = \sup _ \alpha \{ \chi _ {E _ \alpha } \} ;

4) if E = \cap _ \alpha E _ \alpha , then \chi _ {E} = \inf _ \alpha \{ \chi _ {E _ \alpha } \} ;

5) if E _ {1} , E _ {2} \dots are pairwise disjoint, then \chi _ {\cup E _ {K} } = \sum _ {1} ^ \infty \chi _ {E _ {K} } ;

6) if E = \cap _ {K} E _ {K} , then \chi _ {E} = \prod _ {1} ^ \infty \chi _ {E _ {K} } .

References

[1] P.R. Halmos, "Measure theory" , v. Nostrand (1950)

Comments

The characteristic function of a set is also called the indicator function of that set. The symbols \mathbf{1} _ {E} or \xi _ {E} are often used instead of \chi _ {E} .

How to Cite This Entry:
Characteristic function of a set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Characteristic_function_of_a_set&oldid=46320
This article was adapted from an original article by A.A. Konyushkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article