Characteristic function of a set
in a space X
The function \chi = \chi _ {E} that is equal to 1 when x \in E and equal to 0 when x \in \complement E ( where \complement E is the complement to E in X ). Every function \chi on X with values in \{ 0, 1 \} is the characteristic function of some set, namely, the set E = \{ {x } : {\chi ( x) = 1 } \} . Properties of characteristic functions are:
1) \chi _ {\complement E} = 1 - \chi _ {E} , \chi _ {E \setminus F } = \chi _ {E} ( 1 - \chi _ {F} ) ;
2) if F \subset E , then \chi _ {E \setminus F } = \chi _ {E} - \chi _ {F} ;
3) if E = \cup _ \alpha E _ \alpha , then \chi _ {E} = \sup _ \alpha \{ \chi _ {E _ \alpha } \} ;
4) if E = \cap _ \alpha E _ \alpha , then \chi _ {E} = \inf _ \alpha \{ \chi _ {E _ \alpha } \} ;
5) if E _ {1} , E _ {2} \dots are pairwise disjoint, then \chi _ {\cup E _ {K} } = \sum _ {1} ^ \infty \chi _ {E _ {K} } ;
6) if E = \cap _ {K} E _ {K} , then \chi _ {E} = \prod _ {1} ^ \infty \chi _ {E _ {K} } .
References
[1] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) |
Comments
The characteristic function of a set is also called the indicator function of that set. The symbols \mathbf{1} _ {E} or \xi _ {E} are often used instead of \chi _ {E} .
Characteristic function of a set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Characteristic_function_of_a_set&oldid=51072