Characteristic function of a set
$ E $
in a space $ X $
The function $ \chi = \chi _ {E} $ that is equal to 1 when $ x \in E $ and equal to 0 when $ x \in \complement E $( where $\complement E $ is the complement to $ E $ in $ X $). Every function $ \chi $ on $ X $ with values in $ \{ 0, 1 \} $ is the characteristic function of some set, namely, the set $ E = \{ {x } : {\chi ( x) = 1 } \} $. Properties of characteristic functions are:
1) $ \chi _ {\complement E} = 1 - \chi _ {E} $, $ \chi _ {E \setminus F } = \chi _ {E} ( 1 - \chi _ {F} ) $;
2) if $ F \subset E $, then $ \chi _ {E \setminus F } = \chi _ {E} - \chi _ {F} $;
3) if $ E = \cup _ \alpha E _ \alpha $, then $ \chi _ {E} = \sup _ \alpha \{ \chi _ {E _ \alpha } \} $;
4) if $ E = \cap _ \alpha E _ \alpha $, then $ \chi _ {E} = \inf _ \alpha \{ \chi _ {E _ \alpha } \} $;
5) if $ E _ {1} , E _ {2} \dots $ are pairwise disjoint, then $ \chi _ {\cup E _ {K} } = \sum _ {1} ^ \infty \chi _ {E _ {K} } $;
6) if $ E = \cap _ {K} E _ {K} $, then $ \chi _ {E} = \prod _ {1} ^ \infty \chi _ {E _ {K} } $.
References
[1] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) |
Comments
The characteristic function of a set is also called the indicator function of that set. The symbols $ \mathbf{1} _ {E} $ or $ \xi _ {E} $ are often used instead of $ \chi _ {E} $.
Characteristic function of a set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Characteristic_function_of_a_set&oldid=51072