Namespaces
Variants
Actions

Difference between revisions of "Yang-Baxter operators"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
m (Automatically changed introduction)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 149 formulas, 142 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|part}}
 
In their most familiar form, Yang–Baxter operators are certain invertible linear endomorphisms which have applications to physics and topology. In physics these operators often provide solutions to the quantum [[Yang–Baxter equation|Yang–Baxter equation]], an equation which has its roots in statistical mechanics [[#References|[a30]]], [[#References|[a7]]], [[#References|[a28]]], [[#References|[a31]]], [[#References|[a35]]] (cf. also [[Statistical mechanics, mathematical problems in|Statistical mechanics, mathematical problems in]]). In topology quite often they can be used to construct invariants of knots, links or three-dimensional manifolds (cf. also [[Knot theory|Knot theory]]; [[Link|Link]]; [[Three-dimensional manifold|Three-dimensional manifold]]); cf. [[#References|[a30]]], [[#References|[a17]]], [[#References|[a18]]], [[#References|[a26]]], [[#References|[a27]]], [[#References|[a32]]], [[#References|[a33]]].
 
In their most familiar form, Yang–Baxter operators are certain invertible linear endomorphisms which have applications to physics and topology. In physics these operators often provide solutions to the quantum [[Yang–Baxter equation|Yang–Baxter equation]], an equation which has its roots in statistical mechanics [[#References|[a30]]], [[#References|[a7]]], [[#References|[a28]]], [[#References|[a31]]], [[#References|[a35]]] (cf. also [[Statistical mechanics, mathematical problems in|Statistical mechanics, mathematical problems in]]). In topology quite often they can be used to construct invariants of knots, links or three-dimensional manifolds (cf. also [[Knot theory|Knot theory]]; [[Link|Link]]; [[Three-dimensional manifold|Three-dimensional manifold]]); cf. [[#References|[a30]]], [[#References|[a17]]], [[#References|[a18]]], [[#References|[a26]]], [[#References|[a27]]], [[#References|[a32]]], [[#References|[a33]]].
  
 
Closely related to the quantum Yang–Baxter equation is the braid equation. There are natural categorical structures associated with the braid and quantum Yang–Baxter equations which play an important role in [[Quantum groups|quantum groups]] and their applications [[#References|[a21]]], [[#References|[a23]]], [[#References|[a5]]], [[#References|[a34]]].
 
Closely related to the quantum Yang–Baxter equation is the braid equation. There are natural categorical structures associated with the braid and quantum Yang–Baxter equations which play an important role in [[Quantum groups|quantum groups]] and their applications [[#References|[a21]]], [[#References|[a23]]], [[#References|[a5]]], [[#References|[a34]]].
  
Yang–Baxter operators in the [[Category|category]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200101.png" /> of left modules over a [[Commutative ring|commutative ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200102.png" /> are certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200103.png" />-linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200104.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200107.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200108.png" /> is the  "twist"  mapping defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200109.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001011.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001012.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001014.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001015.png" /> satisfies the quantum Yang–Baxter equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001016.png" /> if
+
Yang–Baxter operators in the [[Category|category]] $\square _ { k }\operatorname {Mod}$ of left modules over a [[Commutative ring|commutative ring]] $k$ are certain $k$-linear mappings $R : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$. Let $R _ { 12 } = R \otimes _ { k } 1$, $R _ { 23 } = 1 \otimes _ { k } R$ and $R _ { 13 } = ( 1 \otimes _ { k } \tau _ { V , V } ) ( R \otimes _ { k } 1 ) ( 1 \otimes _ { k } \tau _ { V , V } )$, where $\tau _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ is the  "twist"  mapping defined for $k$-modules $U$ and $V$ by $\tau_{ U , V } ( u \otimes v ) = v \otimes u$ for all $u \in U$ and $v \in V$. Then $R$ satisfies the quantum Yang–Baxter equation in $\square _ { k }\operatorname {Mod}$ if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }. \end{equation}
  
Note that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001018.png" /> satisfies (a1) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001019.png" /> satisfies the braid equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001020.png" />, which is
+
Note that $R$ satisfies (a1) if and only if $B = \tau _ { V , V }  R$ satisfies the braid equation in $\square _ { k }\operatorname {Mod}$, which is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} B _ { 12 } B _ { 23 } B _ { 12 } = B _ { 23 } B _ { 12 } B _ { 23 }. \end{equation}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001022.png" /> is invertible and satisfies (a2), that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001024.png" /> is a Yang–Baxter operator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001026.png" /> (see [[#References|[a5]]]). There are other formulations of the notion of Yang–Baxter operator in the context of modules; see, e.g., [[#References|[a8]]] and [[#References|[a9]]].
+
If $R$ is invertible and satisfies (a2), that is, $R _ { 12 } R _ { 23 } R _ { 12 } = R _ { 23 } R _ { 12 } R _ { 23 }$, then $R$ is a Yang–Baxter operator in $\square _ { k }\operatorname {Mod}$ (see [[#References|[a5]]]). There are other formulations of the notion of Yang–Baxter operator in the context of modules; see, e.g., [[#References|[a8]]] and [[#References|[a9]]].
  
Observe that the quantum Yang–Baxter and braid equations have natural formulations in any category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001027.png" /> with a suitable notion of tensor product and in which the tensor product of morphisms is defined [[#References|[a16]]], [[#References|[a20]]], [[#References|[a34]]]. The notion of quantum Yang–Baxter operator thus has a natural generalization to categories <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001028.png" /> with such additional structure; see, e.g., [[#References|[a16]]], [[#References|[a5]]].
+
Observe that the quantum Yang–Baxter and braid equations have natural formulations in any category $\mathcal{C}$ with a suitable notion of tensor product and in which the tensor product of morphisms is defined [[#References|[a16]]], [[#References|[a20]]], [[#References|[a34]]]. The notion of quantum Yang–Baxter operator thus has a natural generalization to categories $\mathcal{C}$ with such additional structure; see, e.g., [[#References|[a16]]], [[#References|[a5]]].
  
A good source of solutions to (a1) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001029.png" /> are certain elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001030.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001031.png" /> is an [[Algebra|algebra]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001032.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001033.png" /> and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001034.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001035.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png" /> be defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001037.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001039.png" /> is regarded as a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001040.png" />-module under component multiplication. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001041.png" /> is a solution to (a1) for all left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001042.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001043.png" /> if and only if
+
A good source of solutions to (a1) in $\square _ { k }\operatorname {Mod}$ are certain elements $R = \sum _ { s = 1 } ^ { n } a _ { s } \otimes b _ { s } \in A \otimes _ { k } A$, where $A$ is an [[Algebra|algebra]] over $k$. For $R \in A \otimes _ { k } A$ and a $k$-module $V$, let $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ be defined by $R _ { V } ( u \otimes v ) = R \cdot ( u \otimes v )$ for all $u , v \in V$, where $V \otimes _ { k } V$ is regarded as a left $A \otimes _ { k } A$-module under component multiplication. Then $R _ { V }$ is a solution to (a1) for all left $k$-modules $V$ if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001044.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001044.png"/></td> <td style="width:5%;text-align:right;" valign="top">(a3)</td></tr></table>
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001045.png" /> is the algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001046.png" />-matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001047.png" />, then an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001048.png" /> which satisfies (a1), or equivalently (a3), is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001050.png" />-matrix. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001052.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001054.png" /> is the standard basis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001055.png" />. Then (a3) is equivalent to
+
When $A = M _ { n } ( k )$ is the algebra of $( n \times n )$-matrices over $k$, then an $R \in A \otimes _ { k } A$ which satisfies (a1), or equivalently (a3), is called an $R$-matrix. Suppose that $A = M _ { n } ( k )$ and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001052.png"/>, where $r _ { t \text{l}} ^ { s k } \in  k $ and $\{ E _ { t } ^ { s } \} _ { 1  \leq s , t \leq n}$ is the standard basis for $A$. Then (a3) is equivalent to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001056.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001056.png"/></td> <td style="width:5%;text-align:right;" valign="top">(a4)</td></tr></table>
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001057.png" />, which is probably the most familiar form of the quantum Yang–Baxter equation. Ordinarily, (a4) is written using the Einstein [[summation convention]], that is, summation signs are omitted with the understanding that indices that appear as upper and lower indices are summed over their full range of values.
+
for all $1 \leq p , q , r , a , b , c \leq n$, which is probably the most familiar form of the quantum Yang–Baxter equation. Ordinarily, (a4) is written using the Einstein [[summation convention]], that is, summation signs are omitted with the understanding that indices that appear as upper and lower indices are summed over their full range of values.
  
Certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001058.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001059.png" /> with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001060.png" /> which satisfies (a1) can be used to construct invariants. Quasi-triangular Hopf algebras, in particular quantum algebras (cf. also [[Quasi-triangular Hopf algebra|Quasi-triangular Hopf algebra]]), give rise to regular isotopy invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001061.png" />-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001062.png" /> tangles. Ribbon Hopf algebras give rise to regular isotopy invariants of knots and links, and under mild restrictions they give rise to invariants of three-dimensional manifolds. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001063.png" /> be a field. In this case a finite-dimensional [[Hopf algebra|Hopf algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001064.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001065.png" /> is closely linked to these structures. The Hopf algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001066.png" /> is a subHopf algebra of the quantum double <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001067.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001068.png" />, which is a quasi-triangular Hopf algebra [[#References|[a1]]]. Every finite-dimensional quasi-triangular Hopf algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001069.png" /> is a subHopf algebra of a ribbon Hopf algebra; in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001070.png" /> is a subHopf algebra of a ribbon Hopf algebra [[#References|[a6]]].
+
Certain $k$-algebras $A$ with an $R \in A \otimes _ { k } A$ which satisfies (a1) can be used to construct invariants. Quasi-triangular Hopf algebras, in particular quantum algebras (cf. also [[Quasi-triangular Hopf algebra|Quasi-triangular Hopf algebra]]), give rise to regular isotopy invariants of $1$-$1$ tangles. Ribbon Hopf algebras give rise to regular isotopy invariants of knots and links, and under mild restrictions they give rise to invariants of three-dimensional manifolds. Let $k$ be a field. In this case a finite-dimensional [[Hopf algebra|Hopf algebra]] $A$ over $k$ is closely linked to these structures. The Hopf algebra $A$ is a subHopf algebra of the quantum double $D ( A )$ of $A$, which is a quasi-triangular Hopf algebra [[#References|[a1]]]. Every finite-dimensional quasi-triangular Hopf algebra over $k$ is a subHopf algebra of a ribbon Hopf algebra; in particular, $A$ is a subHopf algebra of a ribbon Hopf algebra [[#References|[a6]]].
  
The classification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001071.png" />-matrices seems to be a very daunting task, and most work to date (1998) has involved symbolic computation. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001072.png" /> is the field of complex numbers. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001073.png" />-matrices are completely classified in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001074.png" /> case [[#References|[a13]]] and the classification of one basic family is known in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001075.png" /> case [[#References|[a14]]].
+
The classification of $R$-matrices seems to be a very daunting task, and most work to date (1998) has involved symbolic computation. Suppose that $k$ is the field of complex numbers. Then the $R$-matrices are completely classified in the $n = 2$ case [[#References|[a13]]] and the classification of one basic family is known in the $n = 3$ case [[#References|[a14]]].
  
Some of the more important examples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001076.png" />-matrices, those related to the quantized enveloping algebras, are formal infinite sums or belong to a completed tensor product. See [[#References|[a4]]], [[#References|[a1]]] for discussion of this important part of the theory.
+
Some of the more important examples of $R$-matrices, those related to the quantized enveloping algebras, are formal infinite sums or belong to a completed tensor product. See [[#References|[a4]]], [[#References|[a1]]] for discussion of this important part of the theory.
  
There is a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001077.png" /> with a pre-braiding structure, defined and studied in [[#References|[a34]]], associated to a bi-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001078.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001079.png" /> which gives rise to Yang–Baxter operators. Here, the formal variant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001080.png" /> is considered, whose objects are left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001081.png" />-modules and right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001082.png" />-comodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001083.png" /> which satisfy the condition
+
There is a category $\square _ { A } ^ { A } \mathcal{C}$ with a pre-braiding structure, defined and studied in [[#References|[a34]]], associated to a bi-algebra $A$ over $k$ which gives rise to Yang–Baxter operators. Here, the formal variant $\square _ { A } \mathcal{C} ^ { A }$ is considered, whose objects are left $A$-modules and right $A$-comodules $V$ which satisfy the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001084.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001084.png"/></td> </tr></table>
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001086.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001087.png" /> denotes the [[Coproduct|coproduct]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001088.png" /> applied to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001089.png" />. For an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001090.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001091.png" />, define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001092.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001093.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001094.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001095.png" /> satisfies (a1). The pre-braiding structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001096.png" /> is the collection of morphisms of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001097.png" /> which are defined for all pairs of objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001098.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001099.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010100.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010101.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010102.png" />. Observe that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010103.png" /> is a solution to the braid equation (a2). When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010104.png" /> is a [[Hopf algebra|Hopf algebra]], the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010105.png" /> is invertible, and the collection of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010106.png" /> is referred to as a braiding structure. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010107.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010108.png" /> is a finite-dimensional Hopf algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010109.png" />, the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010110.png" /> can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010111.png" />, the category of left modules of the quantum double [[#References|[a23]]].
+
for all $a \in A$ and $v \in V$, where $\rho ( v ) = v ^ { ( 1 ) } \otimes  v ^ { ( 2 ) } \in V \otimes _ { k } A$ denotes the [[Coproduct|coproduct]] $\rho$ applied to $v \in V$. For an object $V$ of $\square _ { A } \mathcal{C} ^ { A }$, define $\mathcal{R} _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ by $\mathcal{R} _ { V } ( u \otimes v ) = u ^ { \{ 1 \} } \otimes u ^ { ( 2 ) } . v$ for all $u , v \in V$. Then $\mathcal{R} _ { V }$ satisfies (a1). The pre-braiding structure on $\square _ { A } \mathcal{C} ^ { A }$ is the collection of morphisms of the form $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ which are defined for all pairs of objects $U$, $V$ by $\sigma_{ U , V}  ( u \otimes v ) = u ^ { ( 2 ) } . v \otimes u ^ { ( 1 ) }$ for all $u \in U$ and $v \in V$. Observe that $\sigma_{ V , V } = \tau_{ V , V} R _ { V }$ is a solution to the braid equation (a2). When $A$ is a [[Hopf algebra|Hopf algebra]], the morphism $\sigma_{  U, V}$ is invertible, and the collection of all $\sigma_{  U, V}$ is referred to as a braiding structure. When $k$ is a field and $A$ is a finite-dimensional Hopf algebra over $k$, the category $\square _ { D(A) } \mathcal{C}^{D ( A )}$ can be identified with $\square _{D(A)} \operatorname{Mod}$, the category of left modules of the quantum double [[#References|[a23]]].
  
The FRT construction of [[#References|[a11]]], [[#References|[a10]]] has an interesting interpretation in light of the preceding paragraph. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010112.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010113.png" /> is a solution to (a1), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010114.png" /> is a finite-dimensional [[Vector space|vector space]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010115.png" />. The FRT construction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010116.png" /> is a certain bi-algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010117.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010118.png" />. There is a natural way of turning <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010119.png" /> into an object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010120.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010121.png" />, described in [[#References|[a24]]]. For a universal description of the FRT construction associated with certain Yang–Baxter operators, see [[#References|[a5]]], [[#References|[a21]]]. See also [[#References|[a8]]] for a discussion of algebras associated with Yang–Baxter operators.
+
The FRT construction of [[#References|[a11]]], [[#References|[a10]]] has an interesting interpretation in light of the preceding paragraph. Suppose that $k$ is a field and $R : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ is a solution to (a1), where $V$ is a finite-dimensional [[Vector space|vector space]] over $k$. The FRT construction $A ( R )$ is a certain bi-algebra over $k$ associated with $R$. There is a natural way of turning $V$ into an object of $\square _ { A ( R ) } {\cal C} ^ { A ( R) }$ such that $R = \mathcal{R} _ { \mathcal{V} }$, described in [[#References|[a24]]]. For a universal description of the FRT construction associated with certain Yang–Baxter operators, see [[#References|[a5]]], [[#References|[a21]]]. See also [[#References|[a8]]] for a discussion of algebras associated with Yang–Baxter operators.
  
There is a certain quotient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010122.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010123.png" /> which is more closely tied to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010124.png" /> from a computational point of view. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010125.png" />, then it is never the case that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010126.png" /> is a Hopf algebra, whereas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010127.png" /> may very well be a Hopf algebra [[#References|[a25]]]. Determining new families of solutions to (a1) of the type described in the preceding paragraph may very well involve using a combination of bi-algebra techniques involving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010128.png" /> and computer methods [[#References|[a3]]], [[#References|[a25]]].
+
There is a certain quotient $\widetilde { A  ( R )}$ of $A ( R )$ which is more closely tied to $R$ from a computational point of view. If $V \neq ( 0 )$, then it is never the case that $A ( R )$ is a Hopf algebra, whereas $\widetilde { A  ( R )}$ may very well be a Hopf algebra [[#References|[a25]]]. Determining new families of solutions to (a1) of the type described in the preceding paragraph may very well involve using a combination of bi-algebra techniques involving $\widetilde { A  ( R )}$ and computer methods [[#References|[a3]]], [[#References|[a25]]].
  
There are parametrized versions of (a1), and hence parametrized versions of Yang–Baxter operators. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010129.png" /> be a set, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010130.png" /> be a function and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010131.png" /> is a non-empty subset with a (multiplication) mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010132.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010133.png" /> satisfies the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010134.png" />-parameter quantum Yang–Baxter equation if
+
There are parametrized versions of (a1), and hence parametrized versions of Yang–Baxter operators. Let $X$ be a set, $R : X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ be a function and suppose that $Z \subseteq X \times X$ is a non-empty subset with a (multiplication) mapping $Z \rightarrow X$. Then $R$ satisfies the $1$-parameter quantum Yang–Baxter equation if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010135.png" /></td> </tr></table>
+
\begin{equation*} R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 } \end{equation*}
  
holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010136.png" />. There is an FRT construction for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010137.png" />-parameter families [[#References|[a3]]]. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010138.png" />-parameter family of solutions to the quantum Yang–Baxter equation is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png" /> which satisfies
+
holds for all $( x , y ) \in Z$. There is an FRT construction for $1$-parameter families [[#References|[a3]]]. A $2$-parameter family of solutions to the quantum Yang–Baxter equation is a function $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ which satisfies
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010140.png" /></td> </tr></table>
+
\begin{equation*} R ( x , y ) _ { 12 } R ( x , z ) _ { 13 } R ( y , z ) _ { 23 } = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010141.png" /></td> </tr></table>
+
\begin{equation*} = R ( y , z ) _ { 23 } R ( x , z ) _ { 13 } R ( x , y ) _ { 12 } \end{equation*}
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010142.png" />. For examples and discussion, see [[#References|[a1]]], [[#References|[a12]]], [[#References|[a11]]], [[#References|[a15]]], [[#References|[a19]]].
+
for all $x , y , z \in X$. For examples and discussion, see [[#References|[a1]]], [[#References|[a12]]], [[#References|[a11]]], [[#References|[a15]]], [[#References|[a19]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.G. Drinfel'd,  "Quantum groups" , ''Proc. Internat. Congress Mathematicians Berkeley, California, (1987)'' , Amer. Math. Soc.  (1988)  pp. 798–820</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Kassel,  "Quantum groups" , ''Graduate Texts Math.'' , '''155''' , Springer  (1995)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L.A. Lambe,  D.E. Radford,  "Introduction to the quantum Yang–Baxter equation and quantum groups: An algebraic approach" , Kluwer Acad. Publ.  (1997)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  V. Chari,  A. Pressley,  "A guide to quantum groups" , Cambridge Univ. Press  (1994)  (Corrected reprint: 1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  P. Schauenburg,  "On coquasitriangular Hopf algebras and the quantum Yang–Baxter equation" , ''Algebra Berichte'' , '''67''' , R. Fischer  (1992)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  N.Yu. Reshetikhin,  V.G. Turaev,  "Ribbon graphs and their invariants derived from quantum groups"  ''Comm. Math. Phys.'' , '''127'''  (1990)  pp. 1–26</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  R. Baxter,  "Exactly solved models in stastistical mechanics" , Acad. Press  (1982)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  Yu.I. Manin,  "Quantum groups and noncommutative geometry"  ''Centre de Recherche Math. Univ. Montreal''  (1988)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  V.G. Turaev,  "The Yang–Baxter equation and invariants of links"  ''Invent. Math.'' , '''92''' :  3  (1988)  pp. 527–553</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhan,  "Quantization of Lie groups and Lie algebras"  ''Leningrad Math. J.'' , '''1'''  (1990)  pp. 193–225  ''Algebra Anal.'' , '''1'''  (1989)  pp. 178–206</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhan,  "Quantum groups" , ''Braid group, knot theory and statistical mechanics'' , ''Adv. Ser. Math. Phys.'' , '''9''' , World Sci.  (1989)  pp. 97–110</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhan,  "Quantization of Lie groups and Lie algebras" , ''Algebraic analysis, Papers Dedicated to Prof. Mikio Sato on the Occasion of his Sixtieth Birthday'' , '''I''' , Acad. Press  (1988)  pp. 129–139</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  J. Hietarinta,  "Solving the two-dimensional constant quantum Yang-Baxter equation"  ''J. Math. Phys.'' , '''34'''  (1993)  pp. 1725–1756</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  J. Hietarinta,  "The upper triangular solutions to the three-state constant quantum Yang-Baxter equation"  ''J. Phys. A'' , '''26'''  (1993)  pp. 7077–7095</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  M. Jimbo,  "A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010143.png" />-difference analogue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010144.png" /> and the Yang–Baxter equation"  ''Lett. Math. Phys.'' , '''10'''  (1985)  pp. 63–69</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  A. Joyal,  R. Street,  "Braided tensor categories"  ''Adv. Math.'' , '''102'''  (1993)  pp. 20–78</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  L.H. Kauffman,  "Knots and physics" , ''Ser. Knots and Everything'' , '''1''' , World Sci.  (1991)</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top">  L.H. Kauffman,  S. Lins,  "Temperley–Lieb recoupling theory and invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010145.png" />-manifolds" , ''Ann. Math. Studies'' , '''134''' , Princeton Univ. Press  (1994)</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top">  P.P. Kulish,  N.Yu. Reshetikhin,  E.K. Sklyanin,  "Yang–Baxter equation and representation theory: I"  ''Lett. Math. Phys.'' , '''5'''  (1981)  pp. 393–403</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top">  L.A. Lambe,  D.E. Radford,  "Algebraic aspects of the quantum Yang-Baxter equation"  ''J. Algebra'' , '''154'''  (1993)  pp. 228–288</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top">  R.G. Larson,  J. Towber,  "Two dual classes of bialgebras related to the concepts of `quantum groups' and `quantum lie algebras'"  ''Commun. Algebra'' , '''19'''  (1991)  pp. 3295–3345</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top">  S. Majid,  "Foundations of quantum group theory" , Cambridge Univ. Press  (1995)</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top">  S. Majid,  "Doubles of quasi triangular Hopf algebras"  ''Commun. Algebra'' , '''19'''  (1991)  pp. 3061–3073</TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top">  D.E. Radford,  "Solutions to the quantum Yang–Baxter equation and the Drinfel'd double"  ''J. Algebra'' , '''161'''  (1993)  pp. 20–32</TD></TR><TR><TD valign="top">[a25]</TD> <TD valign="top">  D.E. Radford,  "Solutions to the quantum Yang–Baxter equation arising from pointed bi-algebras"  ''Trans. Amer. Math. Soc.'' , '''343'''  (1994)  pp. 455–477</TD></TR><TR><TD valign="top">[a26]</TD> <TD valign="top">  N. Reshetikhin,  "Invariants of links and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010146.png" />-manifolds related to quantum groups" , ''Proc. Internat. Congr. Math., Kyoto, August, 21-29, 1990'' , '''II''' , Springer  (1991)  pp. 1373–1375</TD></TR><TR><TD valign="top">[a27]</TD> <TD valign="top">  N.Yu. Reshetikhin,  V.G. Turaev,  "Invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010147.png" />-manifolds via link polynomials and quantum groups"  ''Invent. Math.'' , '''103'''  (1991)  pp. 547–597</TD></TR><TR><TD valign="top">[a28]</TD> <TD valign="top">  G.M. D'Ariano,  A. Montorsi,  M.G. Rasetti,  "Integrable systems in statistical mechanics" , ''Ser. Adv. Statist. Mech.'' , '''1''' , World Sci.  (1985)</TD></TR><TR><TD valign="top">[a29]</TD> <TD valign="top">  S. Shnider,  S. Sternberg,  "Quantum groups. From coalgebras to Drinfel'd algebras. A guided tour" , ''Graduate Texts Math. Phys.'' , '''II''' , Internat. Press  (1993)</TD></TR><TR><TD valign="top">[a30]</TD> <TD valign="top">  Y. Akutsu,  T. Deguchi,  M. Wadati,  "Exactly solvable models and knot theory"  ''Physics Reports. A Review Section of Physics Lett.'' , '''180'''  (1989)  pp. 247–332</TD></TR><TR><TD valign="top">[a31]</TD> <TD valign="top">  C.N. Yang,  "Some exact results for the many-body problem in one dimension with repulsive delta-function interaction"  ''Phys. Rev. Lett.'' , '''19'''  (1967)  pp. 1312–1315</TD></TR><TR><TD valign="top">[a32]</TD> <TD valign="top">  C.N. Yang,  M.L. Ge,  "Braid group, knot theory and statistical mechanics" , ''Adv. Ser. Math. Phys.'' , '''9''' , World Sci.  (1989)</TD></TR><TR><TD valign="top">[a33]</TD> <TD valign="top">  C.N. Yang,  M.L. Ge,  "Braid group, knot theory and statistical mechanics, II" , ''Adv. Ser. Math. Phys.'' , '''17''' , World Sci.  (1994)</TD></TR><TR><TD valign="top">[a34]</TD> <TD valign="top">  D.N. Yetter,  "Quantum groups and representations of monoidal categories"  ''Math. Proc. Cambridge Philos. Soc.'' , '''108'''  (1990)  pp. 261–290</TD></TR><TR><TD valign="top">[a35]</TD> <TD valign="top">  A.B. Zamolodchikov,  A.B. Zamolodchikov,  "Factorized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010148.png" />-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models"  ''Ann. Phys.'' , '''120'''  (1975)  pp. 253–291</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  V.G. Drinfel'd,  "Quantum groups" , ''Proc. Internat. Congress Mathematicians Berkeley, California, (1987)'' , Amer. Math. Soc.  (1988)  pp. 798–820</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  C. Kassel,  "Quantum groups" , ''Graduate Texts Math.'' , '''155''' , Springer  (1995)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  L.A. Lambe,  D.E. Radford,  "Introduction to the quantum Yang–Baxter equation and quantum groups: An algebraic approach" , Kluwer Acad. Publ.  (1997)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  V. Chari,  A. Pressley,  "A guide to quantum groups" , Cambridge Univ. Press  (1994)  (Corrected reprint: 1995)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  P. Schauenburg,  "On coquasitriangular Hopf algebras and the quantum Yang–Baxter equation" , ''Algebra Berichte'' , '''67''' , R. Fischer  (1992)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  N.Yu. Reshetikhin,  V.G. Turaev,  "Ribbon graphs and their invariants derived from quantum groups"  ''Comm. Math. Phys.'' , '''127'''  (1990)  pp. 1–26</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  R. Baxter,  "Exactly solved models in stastistical mechanics" , Acad. Press  (1982)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  Yu.I. Manin,  "Quantum groups and noncommutative geometry"  ''Centre de Recherche Math. Univ. Montreal''  (1988)</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  V.G. Turaev,  "The Yang–Baxter equation and invariants of links"  ''Invent. Math.'' , '''92''' :  3  (1988)  pp. 527–553</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhan,  "Quantization of Lie groups and Lie algebras"  ''Leningrad Math. J.'' , '''1'''  (1990)  pp. 193–225  ''Algebra Anal.'' , '''1'''  (1989)  pp. 178–206</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhan,  "Quantum groups" , ''Braid group, knot theory and statistical mechanics'' , ''Adv. Ser. Math. Phys.'' , '''9''' , World Sci.  (1989)  pp. 97–110</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhan,  "Quantization of Lie groups and Lie algebras" , ''Algebraic analysis, Papers Dedicated to Prof. Mikio Sato on the Occasion of his Sixtieth Birthday'' , '''I''' , Acad. Press  (1988)  pp. 129–139</td></tr><tr><td valign="top">[a13]</td> <td valign="top">  J. Hietarinta,  "Solving the two-dimensional constant quantum Yang-Baxter equation"  ''J. Math. Phys.'' , '''34'''  (1993)  pp. 1725–1756</td></tr><tr><td valign="top">[a14]</td> <td valign="top">  J. Hietarinta,  "The upper triangular solutions to the three-state constant quantum Yang-Baxter equation"  ''J. Phys. A'' , '''26'''  (1993)  pp. 7077–7095</td></tr><tr><td valign="top">[a15]</td> <td valign="top">  M. Jimbo,  "A $q$-difference analogue of $U ( g )$ and the Yang–Baxter equation" ''Lett. Math. Phys.'' , '''10'''  (1985)  pp. 63–69</td></tr><tr><td valign="top">[a16]</td> <td valign="top">  A. Joyal,  R. Street,  "Braided tensor categories"  ''Adv. Math.'' , '''102'''  (1993)  pp. 20–78</td></tr><tr><td valign="top">[a17]</td> <td valign="top">  L.H. Kauffman,  "Knots and physics" , ''Ser. Knots and Everything'' , '''1''' , World Sci.  (1991)</td></tr><tr><td valign="top">[a18]</td> <td valign="top">  L.H. Kauffman,  S. Lins,  "Temperley–Lieb recoupling theory and invariants of $3$-manifolds" , ''Ann. Math. Studies'' , '''134''' , Princeton Univ. Press  (1994)</td></tr><tr><td valign="top">[a19]</td> <td valign="top">  P.P. Kulish,  N.Yu. Reshetikhin,  E.K. Sklyanin,  "Yang–Baxter equation and representation theory: I"  ''Lett. Math. Phys.'' , '''5'''  (1981)  pp. 393–403</td></tr><tr><td valign="top">[a20]</td> <td valign="top">  L.A. Lambe,  D.E. Radford,  "Algebraic aspects of the quantum Yang-Baxter equation"  ''J. Algebra'' , '''154'''  (1993)  pp. 228–288</td></tr><tr><td valign="top">[a21]</td> <td valign="top">  R.G. Larson,  J. Towber,  "Two dual classes of bialgebras related to the concepts of `quantum groups' and `quantum lie algebras'"  ''Commun. Algebra'' , '''19'''  (1991)  pp. 3295–3345</td></tr><tr><td valign="top">[a22]</td> <td valign="top">  S. Majid,  "Foundations of quantum group theory" , Cambridge Univ. Press  (1995)</td></tr><tr><td valign="top">[a23]</td> <td valign="top">  S. Majid,  "Doubles of quasi triangular Hopf algebras"  ''Commun. Algebra'' , '''19'''  (1991)  pp. 3061–3073</td></tr><tr><td valign="top">[a24]</td> <td valign="top">  D.E. Radford,  "Solutions to the quantum Yang–Baxter equation and the Drinfel'd double"  ''J. Algebra'' , '''161'''  (1993)  pp. 20–32</td></tr><tr><td valign="top">[a25]</td> <td valign="top">  D.E. Radford,  "Solutions to the quantum Yang–Baxter equation arising from pointed bi-algebras"  ''Trans. Amer. Math. Soc.'' , '''343'''  (1994)  pp. 455–477</td></tr><tr><td valign="top">[a26]</td> <td valign="top">  N. Reshetikhin,  "Invariants of links and $3$-manifolds related to quantum groups" , ''Proc. Internat. Congr. Math., Kyoto, August, 21-29, 1990'' , '''II''' , Springer  (1991)  pp. 1373–1375</td></tr><tr><td valign="top">[a27]</td> <td valign="top">  N.Yu. Reshetikhin,  V.G. Turaev,  "Invariants of $3$-manifolds via link polynomials and quantum groups"  ''Invent. Math.'' , '''103'''  (1991)  pp. 547–597</td></tr><tr><td valign="top">[a28]</td> <td valign="top">  G.M. D'Ariano,  A. Montorsi,  M.G. Rasetti,  "Integrable systems in statistical mechanics" , ''Ser. Adv. Statist. Mech.'' , '''1''' , World Sci.  (1985)</td></tr><tr><td valign="top">[a29]</td> <td valign="top">  S. Shnider,  S. Sternberg,  "Quantum groups. From coalgebras to Drinfel'd algebras. A guided tour" , ''Graduate Texts Math. Phys.'' , '''II''' , Internat. Press  (1993)</td></tr><tr><td valign="top">[a30]</td> <td valign="top">  Y. Akutsu,  T. Deguchi,  M. Wadati,  "Exactly solvable models and knot theory"  ''Physics Reports. A Review Section of Physics Lett.'' , '''180'''  (1989)  pp. 247–332</td></tr><tr><td valign="top">[a31]</td> <td valign="top">  C.N. Yang,  "Some exact results for the many-body problem in one dimension with repulsive delta-function interaction"  ''Phys. Rev. Lett.'' , '''19'''  (1967)  pp. 1312–1315</td></tr><tr><td valign="top">[a32]</td> <td valign="top">  C.N. Yang,  M.L. Ge,  "Braid group, knot theory and statistical mechanics" , ''Adv. Ser. Math. Phys.'' , '''9''' , World Sci.  (1989)</td></tr><tr><td valign="top">[a33]</td> <td valign="top">  C.N. Yang,  M.L. Ge,  "Braid group, knot theory and statistical mechanics, II" , ''Adv. Ser. Math. Phys.'' , '''17''' , World Sci.  (1994)</td></tr><tr><td valign="top">[a34]</td> <td valign="top">  D.N. Yetter,  "Quantum groups and representations of monoidal categories"  ''Math. Proc. Cambridge Philos. Soc.'' , '''108'''  (1990)  pp. 261–290</td></tr><tr><td valign="top">[a35]</td> <td valign="top">  A.B. Zamolodchikov,  A.B. Zamolodchikov,  "Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models"  ''Ann. Phys.'' , '''120'''  (1975)  pp. 253–291</td></tr></table>

Latest revision as of 17:45, 1 July 2020

In their most familiar form, Yang–Baxter operators are certain invertible linear endomorphisms which have applications to physics and topology. In physics these operators often provide solutions to the quantum Yang–Baxter equation, an equation which has its roots in statistical mechanics [a30], [a7], [a28], [a31], [a35] (cf. also Statistical mechanics, mathematical problems in). In topology quite often they can be used to construct invariants of knots, links or three-dimensional manifolds (cf. also Knot theory; Link; Three-dimensional manifold); cf. [a30], [a17], [a18], [a26], [a27], [a32], [a33].

Closely related to the quantum Yang–Baxter equation is the braid equation. There are natural categorical structures associated with the braid and quantum Yang–Baxter equations which play an important role in quantum groups and their applications [a21], [a23], [a5], [a34].

Yang–Baxter operators in the category $\square _ { k }\operatorname {Mod}$ of left modules over a commutative ring $k$ are certain $k$-linear mappings $R : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$. Let $R _ { 12 } = R \otimes _ { k } 1$, $R _ { 23 } = 1 \otimes _ { k } R$ and $R _ { 13 } = ( 1 \otimes _ { k } \tau _ { V , V } ) ( R \otimes _ { k } 1 ) ( 1 \otimes _ { k } \tau _ { V , V } )$, where $\tau _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ is the "twist" mapping defined for $k$-modules $U$ and $V$ by $\tau_{ U , V } ( u \otimes v ) = v \otimes u$ for all $u \in U$ and $v \in V$. Then $R$ satisfies the quantum Yang–Baxter equation in $\square _ { k }\operatorname {Mod}$ if

\begin{equation} \tag{a1} R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }. \end{equation}

Note that $R$ satisfies (a1) if and only if $B = \tau _ { V , V } R$ satisfies the braid equation in $\square _ { k }\operatorname {Mod}$, which is

\begin{equation} \tag{a2} B _ { 12 } B _ { 23 } B _ { 12 } = B _ { 23 } B _ { 12 } B _ { 23 }. \end{equation}

If $R$ is invertible and satisfies (a2), that is, $R _ { 12 } R _ { 23 } R _ { 12 } = R _ { 23 } R _ { 12 } R _ { 23 }$, then $R$ is a Yang–Baxter operator in $\square _ { k }\operatorname {Mod}$ (see [a5]). There are other formulations of the notion of Yang–Baxter operator in the context of modules; see, e.g., [a8] and [a9].

Observe that the quantum Yang–Baxter and braid equations have natural formulations in any category $\mathcal{C}$ with a suitable notion of tensor product and in which the tensor product of morphisms is defined [a16], [a20], [a34]. The notion of quantum Yang–Baxter operator thus has a natural generalization to categories $\mathcal{C}$ with such additional structure; see, e.g., [a16], [a5].

A good source of solutions to (a1) in $\square _ { k }\operatorname {Mod}$ are certain elements $R = \sum _ { s = 1 } ^ { n } a _ { s } \otimes b _ { s } \in A \otimes _ { k } A$, where $A$ is an algebra over $k$. For $R \in A \otimes _ { k } A$ and a $k$-module $V$, let $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ be defined by $R _ { V } ( u \otimes v ) = R \cdot ( u \otimes v )$ for all $u , v \in V$, where $V \otimes _ { k } V$ is regarded as a left $A \otimes _ { k } A$-module under component multiplication. Then $R _ { V }$ is a solution to (a1) for all left $k$-modules $V$ if and only if

(a3)

When $A = M _ { n } ( k )$ is the algebra of $( n \times n )$-matrices over $k$, then an $R \in A \otimes _ { k } A$ which satisfies (a1), or equivalently (a3), is called an $R$-matrix. Suppose that $A = M _ { n } ( k )$ and , where $r _ { t \text{l}} ^ { s k } \in k $ and $\{ E _ { t } ^ { s } \} _ { 1 \leq s , t \leq n}$ is the standard basis for $A$. Then (a3) is equivalent to

(a4)

for all $1 \leq p , q , r , a , b , c \leq n$, which is probably the most familiar form of the quantum Yang–Baxter equation. Ordinarily, (a4) is written using the Einstein summation convention, that is, summation signs are omitted with the understanding that indices that appear as upper and lower indices are summed over their full range of values.

Certain $k$-algebras $A$ with an $R \in A \otimes _ { k } A$ which satisfies (a1) can be used to construct invariants. Quasi-triangular Hopf algebras, in particular quantum algebras (cf. also Quasi-triangular Hopf algebra), give rise to regular isotopy invariants of $1$-$1$ tangles. Ribbon Hopf algebras give rise to regular isotopy invariants of knots and links, and under mild restrictions they give rise to invariants of three-dimensional manifolds. Let $k$ be a field. In this case a finite-dimensional Hopf algebra $A$ over $k$ is closely linked to these structures. The Hopf algebra $A$ is a subHopf algebra of the quantum double $D ( A )$ of $A$, which is a quasi-triangular Hopf algebra [a1]. Every finite-dimensional quasi-triangular Hopf algebra over $k$ is a subHopf algebra of a ribbon Hopf algebra; in particular, $A$ is a subHopf algebra of a ribbon Hopf algebra [a6].

The classification of $R$-matrices seems to be a very daunting task, and most work to date (1998) has involved symbolic computation. Suppose that $k$ is the field of complex numbers. Then the $R$-matrices are completely classified in the $n = 2$ case [a13] and the classification of one basic family is known in the $n = 3$ case [a14].

Some of the more important examples of $R$-matrices, those related to the quantized enveloping algebras, are formal infinite sums or belong to a completed tensor product. See [a4], [a1] for discussion of this important part of the theory.

There is a category $\square _ { A } ^ { A } \mathcal{C}$ with a pre-braiding structure, defined and studied in [a34], associated to a bi-algebra $A$ over $k$ which gives rise to Yang–Baxter operators. Here, the formal variant $\square _ { A } \mathcal{C} ^ { A }$ is considered, whose objects are left $A$-modules and right $A$-comodules $V$ which satisfy the condition

for all $a \in A$ and $v \in V$, where $\rho ( v ) = v ^ { ( 1 ) } \otimes v ^ { ( 2 ) } \in V \otimes _ { k } A$ denotes the coproduct $\rho$ applied to $v \in V$. For an object $V$ of $\square _ { A } \mathcal{C} ^ { A }$, define $\mathcal{R} _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ by $\mathcal{R} _ { V } ( u \otimes v ) = u ^ { \{ 1 \} } \otimes u ^ { ( 2 ) } . v$ for all $u , v \in V$. Then $\mathcal{R} _ { V }$ satisfies (a1). The pre-braiding structure on $\square _ { A } \mathcal{C} ^ { A }$ is the collection of morphisms of the form $\sigma _ { U , V } : U \otimes _ { k } V \rightarrow V \otimes _ { k } U$ which are defined for all pairs of objects $U$, $V$ by $\sigma_{ U , V} ( u \otimes v ) = u ^ { ( 2 ) } . v \otimes u ^ { ( 1 ) }$ for all $u \in U$ and $v \in V$. Observe that $\sigma_{ V , V } = \tau_{ V , V} R _ { V }$ is a solution to the braid equation (a2). When $A$ is a Hopf algebra, the morphism $\sigma_{ U, V}$ is invertible, and the collection of all $\sigma_{ U, V}$ is referred to as a braiding structure. When $k$ is a field and $A$ is a finite-dimensional Hopf algebra over $k$, the category $\square _ { D(A) } \mathcal{C}^{D ( A )}$ can be identified with $\square _{D(A)} \operatorname{Mod}$, the category of left modules of the quantum double [a23].

The FRT construction of [a11], [a10] has an interesting interpretation in light of the preceding paragraph. Suppose that $k$ is a field and $R : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ is a solution to (a1), where $V$ is a finite-dimensional vector space over $k$. The FRT construction $A ( R )$ is a certain bi-algebra over $k$ associated with $R$. There is a natural way of turning $V$ into an object of $\square _ { A ( R ) } {\cal C} ^ { A ( R) }$ such that $R = \mathcal{R} _ { \mathcal{V} }$, described in [a24]. For a universal description of the FRT construction associated with certain Yang–Baxter operators, see [a5], [a21]. See also [a8] for a discussion of algebras associated with Yang–Baxter operators.

There is a certain quotient $\widetilde { A ( R )}$ of $A ( R )$ which is more closely tied to $R$ from a computational point of view. If $V \neq ( 0 )$, then it is never the case that $A ( R )$ is a Hopf algebra, whereas $\widetilde { A ( R )}$ may very well be a Hopf algebra [a25]. Determining new families of solutions to (a1) of the type described in the preceding paragraph may very well involve using a combination of bi-algebra techniques involving $\widetilde { A ( R )}$ and computer methods [a3], [a25].

There are parametrized versions of (a1), and hence parametrized versions of Yang–Baxter operators. Let $X$ be a set, $R : X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ be a function and suppose that $Z \subseteq X \times X$ is a non-empty subset with a (multiplication) mapping $Z \rightarrow X$. Then $R$ satisfies the $1$-parameter quantum Yang–Baxter equation if

\begin{equation*} R ( x ) _ { 12 } R ( x y ) _ { 13 } R ( y ) _ { 23 } = R ( y ) _ { 23 } R ( x y ) _ { 13 } R ( x ) _ { 12 } \end{equation*}

holds for all $( x , y ) \in Z$. There is an FRT construction for $1$-parameter families [a3]. A $2$-parameter family of solutions to the quantum Yang–Baxter equation is a function $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ which satisfies

\begin{equation*} R ( x , y ) _ { 12 } R ( x , z ) _ { 13 } R ( y , z ) _ { 23 } = \end{equation*}

\begin{equation*} = R ( y , z ) _ { 23 } R ( x , z ) _ { 13 } R ( x , y ) _ { 12 } \end{equation*}

for all $x , y , z \in X$. For examples and discussion, see [a1], [a12], [a11], [a15], [a19].

References

[a1] V.G. Drinfel'd, "Quantum groups" , Proc. Internat. Congress Mathematicians Berkeley, California, (1987) , Amer. Math. Soc. (1988) pp. 798–820
[a2] C. Kassel, "Quantum groups" , Graduate Texts Math. , 155 , Springer (1995)
[a3] L.A. Lambe, D.E. Radford, "Introduction to the quantum Yang–Baxter equation and quantum groups: An algebraic approach" , Kluwer Acad. Publ. (1997)
[a4] V. Chari, A. Pressley, "A guide to quantum groups" , Cambridge Univ. Press (1994) (Corrected reprint: 1995)
[a5] P. Schauenburg, "On coquasitriangular Hopf algebras and the quantum Yang–Baxter equation" , Algebra Berichte , 67 , R. Fischer (1992)
[a6] N.Yu. Reshetikhin, V.G. Turaev, "Ribbon graphs and their invariants derived from quantum groups" Comm. Math. Phys. , 127 (1990) pp. 1–26
[a7] R. Baxter, "Exactly solved models in stastistical mechanics" , Acad. Press (1982)
[a8] Yu.I. Manin, "Quantum groups and noncommutative geometry" Centre de Recherche Math. Univ. Montreal (1988)
[a9] V.G. Turaev, "The Yang–Baxter equation and invariants of links" Invent. Math. , 92 : 3 (1988) pp. 527–553
[a10] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtadzhan, "Quantization of Lie groups and Lie algebras" Leningrad Math. J. , 1 (1990) pp. 193–225 Algebra Anal. , 1 (1989) pp. 178–206
[a11] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtadzhan, "Quantum groups" , Braid group, knot theory and statistical mechanics , Adv. Ser. Math. Phys. , 9 , World Sci. (1989) pp. 97–110
[a12] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtadzhan, "Quantization of Lie groups and Lie algebras" , Algebraic analysis, Papers Dedicated to Prof. Mikio Sato on the Occasion of his Sixtieth Birthday , I , Acad. Press (1988) pp. 129–139
[a13] J. Hietarinta, "Solving the two-dimensional constant quantum Yang-Baxter equation" J. Math. Phys. , 34 (1993) pp. 1725–1756
[a14] J. Hietarinta, "The upper triangular solutions to the three-state constant quantum Yang-Baxter equation" J. Phys. A , 26 (1993) pp. 7077–7095
[a15] M. Jimbo, "A $q$-difference analogue of $U ( g )$ and the Yang–Baxter equation" Lett. Math. Phys. , 10 (1985) pp. 63–69
[a16] A. Joyal, R. Street, "Braided tensor categories" Adv. Math. , 102 (1993) pp. 20–78
[a17] L.H. Kauffman, "Knots and physics" , Ser. Knots and Everything , 1 , World Sci. (1991)
[a18] L.H. Kauffman, S. Lins, "Temperley–Lieb recoupling theory and invariants of $3$-manifolds" , Ann. Math. Studies , 134 , Princeton Univ. Press (1994)
[a19] P.P. Kulish, N.Yu. Reshetikhin, E.K. Sklyanin, "Yang–Baxter equation and representation theory: I" Lett. Math. Phys. , 5 (1981) pp. 393–403
[a20] L.A. Lambe, D.E. Radford, "Algebraic aspects of the quantum Yang-Baxter equation" J. Algebra , 154 (1993) pp. 228–288
[a21] R.G. Larson, J. Towber, "Two dual classes of bialgebras related to the concepts of `quantum groups' and `quantum lie algebras'" Commun. Algebra , 19 (1991) pp. 3295–3345
[a22] S. Majid, "Foundations of quantum group theory" , Cambridge Univ. Press (1995)
[a23] S. Majid, "Doubles of quasi triangular Hopf algebras" Commun. Algebra , 19 (1991) pp. 3061–3073
[a24] D.E. Radford, "Solutions to the quantum Yang–Baxter equation and the Drinfel'd double" J. Algebra , 161 (1993) pp. 20–32
[a25] D.E. Radford, "Solutions to the quantum Yang–Baxter equation arising from pointed bi-algebras" Trans. Amer. Math. Soc. , 343 (1994) pp. 455–477
[a26] N. Reshetikhin, "Invariants of links and $3$-manifolds related to quantum groups" , Proc. Internat. Congr. Math., Kyoto, August, 21-29, 1990 , II , Springer (1991) pp. 1373–1375
[a27] N.Yu. Reshetikhin, V.G. Turaev, "Invariants of $3$-manifolds via link polynomials and quantum groups" Invent. Math. , 103 (1991) pp. 547–597
[a28] G.M. D'Ariano, A. Montorsi, M.G. Rasetti, "Integrable systems in statistical mechanics" , Ser. Adv. Statist. Mech. , 1 , World Sci. (1985)
[a29] S. Shnider, S. Sternberg, "Quantum groups. From coalgebras to Drinfel'd algebras. A guided tour" , Graduate Texts Math. Phys. , II , Internat. Press (1993)
[a30] Y. Akutsu, T. Deguchi, M. Wadati, "Exactly solvable models and knot theory" Physics Reports. A Review Section of Physics Lett. , 180 (1989) pp. 247–332
[a31] C.N. Yang, "Some exact results for the many-body problem in one dimension with repulsive delta-function interaction" Phys. Rev. Lett. , 19 (1967) pp. 1312–1315
[a32] C.N. Yang, M.L. Ge, "Braid group, knot theory and statistical mechanics" , Adv. Ser. Math. Phys. , 9 , World Sci. (1989)
[a33] C.N. Yang, M.L. Ge, "Braid group, knot theory and statistical mechanics, II" , Adv. Ser. Math. Phys. , 17 , World Sci. (1994)
[a34] D.N. Yetter, "Quantum groups and representations of monoidal categories" Math. Proc. Cambridge Philos. Soc. , 108 (1990) pp. 261–290
[a35] A.B. Zamolodchikov, A.B. Zamolodchikov, "Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models" Ann. Phys. , 120 (1975) pp. 253–291
How to Cite This Entry:
Yang-Baxter operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Yang-Baxter_operators&oldid=37607
This article was adapted from an original article by David E. Radford (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article