Difference between revisions of "Riemann tensor"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r0820701.png | ||
+ | $#A+1 = 37 n = 0 | ||
+ | $#C+1 = 37 : ~/encyclopedia/old_files/data/R082/R.0802070 Riemann tensor, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Riemann curvature tensor'' | ''Riemann curvature tensor'' | ||
− | A four-valent tensor that is studied in the theory of curvature of spaces. Let | + | A four-valent tensor that is studied in the theory of curvature of spaces. Let $ L _ {n} $ |
+ | be a space with an affine connection and let $ \Gamma _ {ij} ^ {k} $ | ||
+ | be the Christoffel symbols (cf. [[Christoffel symbol|Christoffel symbol]]) of the connection of $ L _ {n} $. | ||
+ | The components (coordinates) of the Riemann tensor, which is once contravariant and three times covariant, take the form | ||
+ | |||
+ | $$ | ||
+ | R _ {lki} ^ {q} = \ | ||
− | + | \frac{\partial \Gamma _ {li} ^ {q} }{\partial x ^ {k} } | |
+ | - | ||
+ | \frac{\partial \Gamma _ {ki} ^ {q} }{\partial x ^ {l} } | ||
+ | - \Gamma _ {lp} ^ {q} \Gamma _ {ki} ^ {p} + | ||
+ | \Gamma _ {kp} ^ {q} \Gamma _ {li} ^ {p} , | ||
+ | $$ | ||
− | + | $$ | |
+ | l, k, i, q = 1 \dots n, | ||
+ | $$ | ||
− | where | + | where $ \partial / \partial x _ {k} $ |
+ | is the symbol of differentiation with respect to the space coordinate $ x ^ {k} $, | ||
+ | $ k = 1 \dots n $. | ||
+ | In a Riemannian space $ V _ {n} $ | ||
+ | with a metric tensor $ g _ {ij} $, | ||
+ | in addition to the tensor $ R _ {lki} ^ {q} $ | ||
+ | the four times covariant Riemann tensor obtained by lowering the upper index $ q $ | ||
+ | using the metric tensor $ g _ {ij} $ | ||
+ | is also studied | ||
− | + | $$ | |
+ | R _ {lki} ^ {q} g _ {j} = \ | ||
+ | R _ {lkij\ } \equiv | ||
+ | $$ | ||
− | + | $$ | |
+ | \equiv \ | ||
− | + | \frac{1}{2} | |
+ | \left ( | ||
+ | \frac{\partial ^ {2} g _ {lj} }{\partial x | ||
+ | ^ {k} \partial x ^ {i} } | ||
+ | - | ||
+ | \frac{\partial ^ {2} g _ {li} }{\partial x ^ {k} \partial x ^ {j} } | ||
+ | - | ||
+ | \frac{\partial ^ {2} g _ {kj} }{\partial x ^ {l} \partial x ^ {i} } | ||
+ | + | ||
+ | \frac{\partial ^ {2} | ||
+ | g _ {ki} }{\partial x ^ {l} \partial x ^ {j} } | ||
+ | \right ) + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | g _ {pq} ( \Gamma _ {lj} ^ {p} \Gamma _ {ki} ^ {q} - \Gamma _ {kj} ^ {p} \Gamma _ {li} ^ {q} ). | ||
+ | $$ | ||
− | + | Here $ \Gamma _ {ij} ^ {k} = \Gamma _ {ji} ^ {k} $ | |
+ | since the Riemannian connection (without torsion) is considered on $ V _ {n} $. | ||
+ | In an arbitrary space with an affine connection without torsion the coordinates of the Riemann tensor satisfy the first Bianchi identity | ||
− | + | $$ | |
+ | R _ {lki} ^ {q} + R _ {kil} ^ {q} + R _ {ilk} ^ {q} = 0, | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | R _ {lkij} + R _ {kilj} + R _ {ilkj} = 0, | ||
+ | $$ | ||
i.e. the cyclic sum with respect to the first three subscripts is zero. | i.e. the cyclic sum with respect to the first three subscripts is zero. | ||
Line 25: | Line 85: | ||
The Riemann tensor possesses the following properties: | The Riemann tensor possesses the following properties: | ||
− | 1) | + | 1) $ R _ {lkij} = R _ {ijlk} $; |
− | 2) | + | 2) $ R _ {ilk} ^ {q} = - R _ {ikl} ^ {q} $; |
− | 3) | + | 3) $ R _ {lkij} = - R _ {klij} $, |
+ | $ R _ {lkij} = - R _ {lkji} $; | ||
− | 4) | + | 4) $ R _ {aaij} = 0 $, |
+ | $ R _ {lkbb} = 0 $, | ||
+ | if both subscripts of one pair are identical, then the corresponding coordinate equals zero: $ R _ {aai} ^ {q} = 0 $; | ||
5) the second Bianchi identity is applicable to the absolute derivatives of the Riemann tensor: | 5) the second Bianchi identity is applicable to the absolute derivatives of the Riemann tensor: | ||
− | + | $$ | |
+ | \nabla _ {m} R _ {kli} ^ {q} + \nabla _ {k} R _ {jmi} ^ {q} + \nabla _ {l} R _ {mki} ^ {q} = 0, | ||
+ | $$ | ||
− | where | + | where $ \nabla _ {m} $ |
+ | is the symbol for covariant differentiation in the direction of the coordinate $ x ^ {m} $. | ||
+ | The same identity is applicable to the tensor $ R _ {lkij} $. | ||
− | A Riemann tensor has, in all, | + | A Riemann tensor has, in all, $ n ^ {4} $ |
+ | coordinates, $ n $ | ||
+ | being the dimension of the space, among which $ n ^ {2} ( n ^ {2} - 1)/12 $ | ||
+ | are essential. Between the latter no additional dependencies result from the properties listed above. | ||
− | When | + | When $ n= 2 $ |
+ | the Riemann tensor has one essential coordinate, $ R _ {1212} $; | ||
+ | it forms part of the definition of the intrinsic, or Riemannian, curvature of the surface: $ K = R _ {1212} / \mathop{\rm det} g _ {ij} $( | ||
+ | see [[Gaussian curvature|Gaussian curvature]]). | ||
The Riemann tensor was defined by B. Riemann in 1861 (published in 1876). | The Riemann tensor was defined by B. Riemann in 1861 (published in 1876). | ||
Line 47: | Line 120: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1–2''' , Interscience (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff (1924)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''1979''' , Publish or Perish pp. 1–5</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> L.P. Eisenhart, "An introduction to differential geometry with the use of the tensor calculus" , Princeton Univ. Press (1947)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1–2''' , Interscience (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff (1924)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''1979''' , Publish or Perish pp. 1–5</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> L.P. Eisenhart, "An introduction to differential geometry with the use of the tensor calculus" , Princeton Univ. Press (1947)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German)</TD></TR></table> |
Latest revision as of 08:11, 6 June 2020
Riemann curvature tensor
A four-valent tensor that is studied in the theory of curvature of spaces. Let $ L _ {n} $ be a space with an affine connection and let $ \Gamma _ {ij} ^ {k} $ be the Christoffel symbols (cf. Christoffel symbol) of the connection of $ L _ {n} $. The components (coordinates) of the Riemann tensor, which is once contravariant and three times covariant, take the form
$$ R _ {lki} ^ {q} = \ \frac{\partial \Gamma _ {li} ^ {q} }{\partial x ^ {k} } - \frac{\partial \Gamma _ {ki} ^ {q} }{\partial x ^ {l} } - \Gamma _ {lp} ^ {q} \Gamma _ {ki} ^ {p} + \Gamma _ {kp} ^ {q} \Gamma _ {li} ^ {p} , $$
$$ l, k, i, q = 1 \dots n, $$
where $ \partial / \partial x _ {k} $ is the symbol of differentiation with respect to the space coordinate $ x ^ {k} $, $ k = 1 \dots n $. In a Riemannian space $ V _ {n} $ with a metric tensor $ g _ {ij} $, in addition to the tensor $ R _ {lki} ^ {q} $ the four times covariant Riemann tensor obtained by lowering the upper index $ q $ using the metric tensor $ g _ {ij} $ is also studied
$$ R _ {lki} ^ {q} g _ {j} = \ R _ {lkij\ } \equiv $$
$$ \equiv \ \frac{1}{2} \left ( \frac{\partial ^ {2} g _ {lj} }{\partial x ^ {k} \partial x ^ {i} } - \frac{\partial ^ {2} g _ {li} }{\partial x ^ {k} \partial x ^ {j} } - \frac{\partial ^ {2} g _ {kj} }{\partial x ^ {l} \partial x ^ {i} } + \frac{\partial ^ {2} g _ {ki} }{\partial x ^ {l} \partial x ^ {j} } \right ) + $$
$$ + g _ {pq} ( \Gamma _ {lj} ^ {p} \Gamma _ {ki} ^ {q} - \Gamma _ {kj} ^ {p} \Gamma _ {li} ^ {q} ). $$
Here $ \Gamma _ {ij} ^ {k} = \Gamma _ {ji} ^ {k} $ since the Riemannian connection (without torsion) is considered on $ V _ {n} $. In an arbitrary space with an affine connection without torsion the coordinates of the Riemann tensor satisfy the first Bianchi identity
$$ R _ {lki} ^ {q} + R _ {kil} ^ {q} + R _ {ilk} ^ {q} = 0, $$
$$ R _ {lkij} + R _ {kilj} + R _ {ilkj} = 0, $$
i.e. the cyclic sum with respect to the first three subscripts is zero.
The Riemann tensor possesses the following properties:
1) $ R _ {lkij} = R _ {ijlk} $;
2) $ R _ {ilk} ^ {q} = - R _ {ikl} ^ {q} $;
3) $ R _ {lkij} = - R _ {klij} $, $ R _ {lkij} = - R _ {lkji} $;
4) $ R _ {aaij} = 0 $, $ R _ {lkbb} = 0 $, if both subscripts of one pair are identical, then the corresponding coordinate equals zero: $ R _ {aai} ^ {q} = 0 $;
5) the second Bianchi identity is applicable to the absolute derivatives of the Riemann tensor:
$$ \nabla _ {m} R _ {kli} ^ {q} + \nabla _ {k} R _ {jmi} ^ {q} + \nabla _ {l} R _ {mki} ^ {q} = 0, $$
where $ \nabla _ {m} $ is the symbol for covariant differentiation in the direction of the coordinate $ x ^ {m} $. The same identity is applicable to the tensor $ R _ {lkij} $.
A Riemann tensor has, in all, $ n ^ {4} $ coordinates, $ n $ being the dimension of the space, among which $ n ^ {2} ( n ^ {2} - 1)/12 $ are essential. Between the latter no additional dependencies result from the properties listed above.
When $ n= 2 $ the Riemann tensor has one essential coordinate, $ R _ {1212} $; it forms part of the definition of the intrinsic, or Riemannian, curvature of the surface: $ K = R _ {1212} / \mathop{\rm det} g _ {ij} $( see Gaussian curvature).
The Riemann tensor was defined by B. Riemann in 1861 (published in 1876).
References
[1] | P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
[2] | L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949) |
[3] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) |
Comments
References
[a1] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1–2 , Interscience (1969) |
[a2] | N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965) |
[a3] | J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , 2 , Noordhoff (1924) |
[a4] | M. Spivak, "A comprehensive introduction to differential geometry" , 1979 , Publish or Perish pp. 1–5 |
[a5] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) |
[a6] | L.P. Eisenhart, "An introduction to differential geometry with the use of the tensor calculus" , Princeton Univ. Press (1947) |
[a7] | J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German) |
Riemann tensor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemann_tensor&oldid=15143