|
|
Line 1: |
Line 1: |
− | A rectangular matrix of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576101.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576102.png" />, each row of which is a permutation (without repetitions) of the elements of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576103.png" /> consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576104.png" /> elements, and in the columns each element occurs at most once. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576105.png" /> a Latin rectangle is a [[Latin square|Latin square]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576106.png" />. Usually <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576107.png" />, and one says that the Latin rectangle is constructed on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576108.png" />.
| + | <!-- |
| + | l0576101.png |
| + | $#A+1 = 72 n = 0 |
| + | $#C+1 = 72 : ~/encyclopedia/old_files/data/L057/L.0507610 Latin rectangle |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A Latin rectangle exists for any natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l0576109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761011.png" />. An example of a Latin rectangle is a matrix with first row <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761012.png" /> and where any subsequent row is obtained from the previous row by a cyclic shift by one place. A Latin rectangle of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761014.png" />, can always be completed to a Latin square of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761015.png" /> in such a way that the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761016.png" /> rows of the Latin square are the same as those of the Latin rectangle.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | For the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761017.png" /> of Latin rectangles of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761018.png" /> one has the following lower bound: | + | A rectangular matrix of dimension $ m \times n $, |
| + | $ m \leq n $, |
| + | each row of which is a permutation (without repetitions) of the elements of a set $ S $ |
| + | consisting of $ n $ |
| + | elements, and in the columns each element occurs at most once. For $ m = n $ |
| + | a Latin rectangle is a [[Latin square|Latin square]] of order $ n $. |
| + | Usually $ S = \{ 1 \dots n \} $, |
| + | and one says that the Latin rectangle is constructed on the set $ S $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761019.png" /></td> </tr></table>
| + | A Latin rectangle exists for any natural numbers $ m $ |
| + | and $ n $, |
| + | $ m \leq n $. |
| + | An example of a Latin rectangle is a matrix with first row $ ( 1 \dots n ) $ |
| + | and where any subsequent row is obtained from the previous row by a cyclic shift by one place. A Latin rectangle of dimension $ m \times n $, |
| + | $ m < n $, |
| + | can always be completed to a Latin square of order $ n $ |
| + | in such a way that the first $ m $ |
| + | rows of the Latin square are the same as those of the Latin rectangle. |
| | | |
− | A Latin rectangle is said to be normalized if its first row is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761020.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761021.png" /> of normalized Latin rectangles is connected with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761022.png" /> by the relation
| + | For the number $ L ( m , n ) $ |
| + | of Latin rectangles of dimension $ m \times n $ |
| + | one has the following lower bound: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761023.png" /></td> </tr></table>
| + | $$ |
| + | L ( m , n ) \geq n ! ( n - 1 ) ! \dots ( n - m + 1 ) ! . |
| + | $$ |
| | | |
− | The calculation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761024.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761025.png" /> and 3 is connected with the following [[classical combinatorial problems]]: the problem of the number of [[derangement]]s and the married-couples problem. Thus, the number of derangements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761026.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761027.png" />, and the number of arrangements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761028.png" /> in the married-couples problem is the number of Latin rectangles of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761029.png" /> with first two rows
| + | A Latin rectangle is said to be normalized if its first row is $ ( 1 \dots n ) $. |
| + | The number $ K ( m , n ) $ |
| + | of normalized Latin rectangles is connected with $ L ( m , n ) $ |
| + | by the relation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761030.png" /></td> </tr></table>
| + | $$ |
| + | L ( m , n ) = n ! K ( m , n ) . |
| + | $$ |
| | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761031.png" /> one has the formulas
| + | The calculation of $ L ( m , n ) $ |
| + | for $ m = 2 $ |
| + | and 3 is connected with the following [[classical combinatorial problems]]: the problem of the number of [[derangement]]s and the married-couples problem. Thus, the number of derangements $ D _ {n} $ |
| + | equals $ K ( 2 , n ) $, |
| + | and the number of arrangements $ U _ {n} $ |
| + | in the married-couples problem is the number of Latin rectangles of dimension $ 3 \times n $ |
| + | with first two rows |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761032.png" /></td> </tr></table>
| + | $$ |
| + | \left ( |
| + | \begin{array}{ccccc} |
| + | 1 & 2 & 3 &\dots & n \\ |
| + | n & 1 & 2 &\dots &n- 1 \\ |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761033.png" /></td> </tr></table>
| + | \right ) . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761034.png" /></td> </tr></table>
| + | For $ U _ {n} $ |
| + | one has the formulas |
| | | |
− | The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761035.png" /> can be expressed in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761037.png" />:
| + | $$ |
| + | U _ {n} = \sum _ { k= } 0 ^ { n } |
| + | ( - 1 ) ^ {k} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761038.png" /></td> </tr></table>
| + | \frac{2 k }{2 k - 1 } |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761040.png" />. One also has the following asymptotic expansion:
| + | \left ( 2k- |
| + | \frac{1}{k} |
| + | \right ) ( n - k ) ! , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761041.png" /></td> </tr></table>
| + | $$ |
| + | U _ {n} \sim n ! e ^ {-} 2 \left ( 1 - |
| + | \frac{1}{n-} |
| + | 1 + \dots + |
| + | \frac{ |
| + | ( - 1 ) ^ {k} }{k ! ( n - 1 ) _ {k} } |
| + | + \dots \right ) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761043.png" /> being the [[Hermite polynomials|Hermite polynomials]]. It is also known that
| + | $$ |
| + | ( m) _ {k} = m ( m - 1 ) \dots ( m - k + 1 ) . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761044.png" /></td> </tr></table>
| + | The number $ K ( 3 , n ) $ |
| + | can be expressed in terms of $ D _ {k} $ |
| + | and $ U _ {l} $: |
| | | |
− | The problem of enumerating Latin rectangles having more than three rows is unsolved (1982). For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761045.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761046.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761047.png" />, the following asymptotic behaviour holds:
| + | $$ |
| + | K ( 3 , n ) = \sum _ { k= } 0 ^ { m } |
| + | \left ( \begin{array}{c} |
| + | n \\ |
| + | k |
| + | \end{array} |
| + | \right ) |
| + | D _ {n-} k D _ {k} U _ {n-} 2k , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761048.png" /></td> </tr></table>
| + | where $ m = [ n / 2 ] $, |
| + | $ U _ {0} = 1 $. |
| + | One also has the following asymptotic expansion: |
| | | |
− | Certain concepts and theorems connected with Latin squares can be extended to Latin rectangles. Thus, two Latin rectangles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761050.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761051.png" /> are said to be orthogonal if all pairs of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761052.png" /> are distinct. A set of Latin rectangles in which any two of them are orthogonal has at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761053.png" /> Latin rectangles.
| + | $$ |
| + | K ( 3 , n ) \sim ( n ! ) ^ {2} e ^ {-} 3 |
| + | \left ( |
| + | 1 - |
| + | \frac{1}{n} |
| + | - |
| + | \frac{1}{2 ! ( n ) _ {2} } |
| + | + \dots + |
| | | |
− | The term "Latin rectangle" is often used in a more general sense: A generalized Latin rectangle of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761054.png" />, constructed on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761055.png" /> consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761056.png" /> elements, is a matrix of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761057.png" /> with elements from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761058.png" /> that occur at most once in each row and column. A (generalized) Latin rectangle of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761059.png" /> constructed on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761060.png" /> symbols can be extended to a Latin square of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761061.png" /> if and only if each symbol occurs at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761062.png" /> times in the Latin rectangle. | + | \frac{b _ {s} }{s ! ( n ) _ {s} } |
| + | + \dots |
| + | \right ) , |
| + | $$ |
| + | |
| + | where $ b _ {s} = H _ {s} ( - 1 / 2 ) $, |
| + | $ H _ {s} ( t) $ |
| + | being the [[Hermite polynomials|Hermite polynomials]]. It is also known that |
| + | |
| + | $$ |
| + | K ( 3 , r + s ) \equiv 2 ^ {r} K ( 3 , s ) ( \mathop{\rm mod} r ) . |
| + | $$ |
| + | |
| + | The problem of enumerating Latin rectangles having more than three rows is unsolved (1982). For $ m < n ^ {( 1 / 3 ) - \delta } $, |
| + | where $ \delta = \delta ( n) \rightarrow 0 $ |
| + | such that $ n ^ {- \delta ( n) } \rightarrow 0 $, |
| + | the following asymptotic behaviour holds: |
| + | |
| + | $$ |
| + | L ( m , n ) \sim ( n ! ) ^ {m} |
| + | \mathop{\rm exp} |
| + | \left \{ |
| + | - |
| + | \frac{m ( m - 1 ) }{2} |
| + | |
| + | \right \} . |
| + | $$ |
| + | |
| + | Certain concepts and theorems connected with Latin squares can be extended to Latin rectangles. Thus, two Latin rectangles $ \| a _ {ij} \| $ |
| + | and $ \| b _ {ij} \| $ |
| + | of dimension $ m \times n $ |
| + | are said to be orthogonal if all pairs of the form $ ( a _ {ij} , b _ {ij} ) $ |
| + | are distinct. A set of Latin rectangles in which any two of them are orthogonal has at most $ m - 1 $ |
| + | Latin rectangles. |
| + | |
| + | The term "Latin rectangle" is often used in a more general sense: A generalized Latin rectangle of dimension $ r \times s $, |
| + | constructed on a set $ S $ |
| + | consisting of $ n $ |
| + | elements, is a matrix of dimension $ r \times s $ |
| + | with elements from $ S $ |
| + | that occur at most once in each row and column. A (generalized) Latin rectangle of dimension $ r \times s $ |
| + | constructed on $ n $ |
| + | symbols can be extended to a Latin square of order $ n $ |
| + | if and only if each symbol occurs at least $ r + s - n $ |
| + | times in the Latin rectangle. |
| | | |
| See also the references to [[Latin square|Latin square]]. | | See also the references to [[Latin square|Latin square]]. |
Line 47: |
Line 169: |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Riordan, "An introduction to combinatorial analysis" , Wiley (1967)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Riordan, "An introduction to combinatorial analysis" , Wiley (1967)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | The married-couples problem (or [[problème des ménages]]) asks for the number of ways of seating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761063.png" /> married couples at a circular table with men and women alternating and so that no wife sits next to her husband. The number of solutions is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761065.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761066.png" />-th ménage number. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761067.png" /> is equal to the number of permutations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761068.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761069.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761070.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057610/l05761072.png" />. | + | The married-couples problem (or [[problème des ménages]]) asks for the number of ways of seating $ n $ |
| + | married couples at a circular table with men and women alternating and so that no wife sits next to her husband. The number of solutions is $ M _ {n} = 2 n ! U _ {n} $, |
| + | where $ U _ {n} $ |
| + | is called the $ n $- |
| + | th ménage number. The number $ U _ {n} $ |
| + | is equal to the number of permutations $ \sigma $ |
| + | of $ \{ 1 \dots n \} $ |
| + | such that $ \sigma ( i) \neq i , i + 1 $ |
| + | for all $ i = 1 \dots n - 1 $ |
| + | and $ \sigma ( n) \neq 1 , n $. |
A rectangular matrix of dimension $ m \times n $,
$ m \leq n $,
each row of which is a permutation (without repetitions) of the elements of a set $ S $
consisting of $ n $
elements, and in the columns each element occurs at most once. For $ m = n $
a Latin rectangle is a Latin square of order $ n $.
Usually $ S = \{ 1 \dots n \} $,
and one says that the Latin rectangle is constructed on the set $ S $.
A Latin rectangle exists for any natural numbers $ m $
and $ n $,
$ m \leq n $.
An example of a Latin rectangle is a matrix with first row $ ( 1 \dots n ) $
and where any subsequent row is obtained from the previous row by a cyclic shift by one place. A Latin rectangle of dimension $ m \times n $,
$ m < n $,
can always be completed to a Latin square of order $ n $
in such a way that the first $ m $
rows of the Latin square are the same as those of the Latin rectangle.
For the number $ L ( m , n ) $
of Latin rectangles of dimension $ m \times n $
one has the following lower bound:
$$
L ( m , n ) \geq n ! ( n - 1 ) ! \dots ( n - m + 1 ) ! .
$$
A Latin rectangle is said to be normalized if its first row is $ ( 1 \dots n ) $.
The number $ K ( m , n ) $
of normalized Latin rectangles is connected with $ L ( m , n ) $
by the relation
$$
L ( m , n ) = n ! K ( m , n ) .
$$
The calculation of $ L ( m , n ) $
for $ m = 2 $
and 3 is connected with the following classical combinatorial problems: the problem of the number of derangements and the married-couples problem. Thus, the number of derangements $ D _ {n} $
equals $ K ( 2 , n ) $,
and the number of arrangements $ U _ {n} $
in the married-couples problem is the number of Latin rectangles of dimension $ 3 \times n $
with first two rows
$$
\left (
\begin{array}{ccccc}
1 & 2 & 3 &\dots & n \\
n & 1 & 2 &\dots &n- 1 \\
\end{array}
\right ) .
$$
For $ U _ {n} $
one has the formulas
$$
U _ {n} = \sum _ { k= } 0 ^ { n }
( - 1 ) ^ {k}
\frac{2 k }{2 k - 1 }
\left ( 2k-
\frac{1}{k}
\right ) ( n - k ) ! ,
$$
$$
U _ {n} \sim n ! e ^ {-} 2 \left ( 1 -
\frac{1}{n-}
1 + \dots +
\frac{
( - 1 ) ^ {k} }{k ! ( n - 1 ) _ {k} }
+ \dots \right ) ,
$$
$$
( m) _ {k} = m ( m - 1 ) \dots ( m - k + 1 ) .
$$
The number $ K ( 3 , n ) $
can be expressed in terms of $ D _ {k} $
and $ U _ {l} $:
$$
K ( 3 , n ) = \sum _ { k= } 0 ^ { m }
\left ( \begin{array}{c}
n \\
k
\end{array}
\right )
D _ {n-} k D _ {k} U _ {n-} 2k ,
$$
where $ m = [ n / 2 ] $,
$ U _ {0} = 1 $.
One also has the following asymptotic expansion:
$$
K ( 3 , n ) \sim ( n ! ) ^ {2} e ^ {-} 3
\left (
1 -
\frac{1}{n}
-
\frac{1}{2 ! ( n ) _ {2} }
+ \dots +
\frac{b _ {s} }{s ! ( n ) _ {s} }
+ \dots
\right ) ,
$$
where $ b _ {s} = H _ {s} ( - 1 / 2 ) $,
$ H _ {s} ( t) $
being the Hermite polynomials. It is also known that
$$
K ( 3 , r + s ) \equiv 2 ^ {r} K ( 3 , s ) ( \mathop{\rm mod} r ) .
$$
The problem of enumerating Latin rectangles having more than three rows is unsolved (1982). For $ m < n ^ {( 1 / 3 ) - \delta } $,
where $ \delta = \delta ( n) \rightarrow 0 $
such that $ n ^ {- \delta ( n) } \rightarrow 0 $,
the following asymptotic behaviour holds:
$$
L ( m , n ) \sim ( n ! ) ^ {m}
\mathop{\rm exp}
\left \{
-
\frac{m ( m - 1 ) }{2}
\right \} .
$$
Certain concepts and theorems connected with Latin squares can be extended to Latin rectangles. Thus, two Latin rectangles $ \| a _ {ij} \| $
and $ \| b _ {ij} \| $
of dimension $ m \times n $
are said to be orthogonal if all pairs of the form $ ( a _ {ij} , b _ {ij} ) $
are distinct. A set of Latin rectangles in which any two of them are orthogonal has at most $ m - 1 $
Latin rectangles.
The term "Latin rectangle" is often used in a more general sense: A generalized Latin rectangle of dimension $ r \times s $,
constructed on a set $ S $
consisting of $ n $
elements, is a matrix of dimension $ r \times s $
with elements from $ S $
that occur at most once in each row and column. A (generalized) Latin rectangle of dimension $ r \times s $
constructed on $ n $
symbols can be extended to a Latin square of order $ n $
if and only if each symbol occurs at least $ r + s - n $
times in the Latin rectangle.
See also the references to Latin square.
References
[1] | J. Riordan, "An introduction to combinatorial analysis" , Wiley (1967) |
The married-couples problem (or problème des ménages) asks for the number of ways of seating $ n $
married couples at a circular table with men and women alternating and so that no wife sits next to her husband. The number of solutions is $ M _ {n} = 2 n ! U _ {n} $,
where $ U _ {n} $
is called the $ n $-
th ménage number. The number $ U _ {n} $
is equal to the number of permutations $ \sigma $
of $ \{ 1 \dots n \} $
such that $ \sigma ( i) \neq i , i + 1 $
for all $ i = 1 \dots n - 1 $
and $ \sigma ( n) \neq 1 , n $.