|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523301.png" /> of a group (algebra, ring, semi-group) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523302.png" /> in a vector space (or topological vector space) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523303.png" />''
| + | <!-- |
| + | i0523301.png |
| + | $#A+1 = 17 n = 0 |
| + | $#C+1 = 17 : ~/encyclopedia/old_files/data/I052/I.0502330 Invariant subspace of a representation |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A vector (respectively, a closed vector) subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523304.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523305.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523306.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523307.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523308.png" /> is a projection operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i0523309.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233010.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233011.png" /> is an invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233012.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233014.png" />. The subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233016.png" /> is invariant for any representation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052330/i05233017.png" />; it is called the trivial invariant subspace; the remaining invariant subspaces (if there are any) are called non-trivial. See also [[Contraction of a representation|Contraction of a representation]]; [[Completely-reducible set|Completely-reducible set]]; [[Irreducible representation|Irreducible representation]]. | + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | '' $ \pi $ |
| + | of a group (algebra, ring, semi-group) $ X $ |
| + | in a vector space (or topological vector space) $ E $'' |
| + | |
| + | A vector (respectively, a closed vector) subspace $ F \subset E $ |
| + | such that for any $ \xi \in F $ |
| + | and any $ x \in X $ |
| + | one has $ \pi ( x ) \xi \in F $. |
| + | If $ P $ |
| + | is a projection operator from $ E $ |
| + | onto $ F $, |
| + | then $ F $ |
| + | is an invariant subspace of $ \pi $ |
| + | if and only if $ P \pi ( x ) P = \pi ( x ) P $ |
| + | for all $ x \in X $. |
| + | The subspace $ \{ 0 \} $ |
| + | in $ E $ |
| + | is invariant for any representation in $ E $; |
| + | it is called the trivial invariant subspace; the remaining invariant subspaces (if there are any) are called non-trivial. See also [[Contraction of a representation|Contraction of a representation]]; [[Completely-reducible set|Completely-reducible set]]; [[Irreducible representation|Irreducible representation]]. |
Latest revision as of 22:13, 5 June 2020
$ \pi $
of a group (algebra, ring, semi-group) $ X $
in a vector space (or topological vector space) $ E $
A vector (respectively, a closed vector) subspace $ F \subset E $
such that for any $ \xi \in F $
and any $ x \in X $
one has $ \pi ( x ) \xi \in F $.
If $ P $
is a projection operator from $ E $
onto $ F $,
then $ F $
is an invariant subspace of $ \pi $
if and only if $ P \pi ( x ) P = \pi ( x ) P $
for all $ x \in X $.
The subspace $ \{ 0 \} $
in $ E $
is invariant for any representation in $ E $;
it is called the trivial invariant subspace; the remaining invariant subspaces (if there are any) are called non-trivial. See also Contraction of a representation; Completely-reducible set; Irreducible representation.
How to Cite This Entry:
Invariant subspace of a representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariant_subspace_of_a_representation&oldid=12674
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article