Namespaces
Variants
Actions

Difference between revisions of "Infinitely-distant elements"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
i0509001.png
 +
$#A+1 = 62 n = 0
 +
$#C+1 = 62 : ~/encyclopedia/old_files/data/I050/I.0500900 Infinitely\AAhdistant elements,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''infinitely-remote elements, improper elements, ideal elements''
 
''infinitely-remote elements, improper elements, ideal elements''
  
 
Elements (points, straight lines, planes, etc.), generated by extending a given affine space to a compact space. Infinitely-distant elements are one of the forms in which the  "actual"  [[Infinity|infinity]] is manifested in various mathematical theories. The continuous connection of the finite and the infinite is manifested by the fact that infinitely-distant elements are meaningful only in as far as they are considered in the context of some concrete compactification of a given  "finite"  space. The types of infinitely-distant elements resulting from the most frequent methods of compactification of finite-dimensional Euclidean spaces are described below.
 
Elements (points, straight lines, planes, etc.), generated by extending a given affine space to a compact space. Infinitely-distant elements are one of the forms in which the  "actual"  [[Infinity|infinity]] is manifested in various mathematical theories. The continuous connection of the finite and the infinite is manifested by the fact that infinitely-distant elements are meaningful only in as far as they are considered in the context of some concrete compactification of a given  "finite"  space. The types of infinitely-distant elements resulting from the most frequent methods of compactification of finite-dimensional Euclidean spaces are described below.
  
1) If infinitely-distant elements (points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509001.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509002.png" />) are introduced, the number axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509003.png" /> is completed to the compact extended number axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509004.png" />, which is homeomorphic to a (closed) segment. Another way of compactification consists in imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509005.png" /> in the real projective straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509006.png" />, which is homeomorphic to the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509007.png" /> (cf. [[Projective space|Projective space]]); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509008.png" /> is then completed by a single, unique infinitely-distant point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i0509009.png" />.
+
1) If infinitely-distant elements (points $  - \infty $
 +
and $  + \infty $)  
 +
are introduced, the number axis $  \mathbf R $
 +
is completed to the compact extended number axis $  \overline{\mathbf R}\; $,  
 +
which is homeomorphic to a (closed) segment. Another way of compactification consists in imbedding $  \mathbf R $
 +
in the real projective straight line $  P _ {1} ( \mathbf R ) = \widetilde{\mathbf R}  $,  
 +
which is homeomorphic to the circle $  S  ^ {1} $(
 +
cf. [[Projective space|Projective space]]); $  \mathbf R $
 +
is then completed by a single, unique infinitely-distant point $  \infty $.
  
2) By the addition of a single, unique infinitely-distant point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090010.png" /> the finite complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090011.png" /> is completed to the compact extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090012.png" />, which is homeomorphic to the complex [[Projective straight line|projective straight line]] or the Riemann sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090013.png" /> (the unit sphere in the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090014.png" />).
+
2) By the addition of a single, unique infinitely-distant point $  \infty $
 +
the finite complex plane $  \mathbf C $
 +
is completed to the compact extended complex plane $  \overline{\mathbf C}\; $,  
 +
which is homeomorphic to the complex [[Projective straight line|projective straight line]] or the Riemann sphere $  S  ^ {2} $(
 +
the unit sphere in the Euclidean space $  \mathbf R  ^ {3} $).
  
3) By the addition of a single, unique infinitely-distant point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090015.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090016.png" />-dimensional real number space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090018.png" />, is completed to the compact extended number space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090019.png" />, which is homeomorphic to the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090020.png" />; this homeomorphism can be demonstrated visually by [[Stereographic projection|stereographic projection]]. Another method of compactification consists in imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090021.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090022.png" />-dimensional real projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090024.png" />, these two compactifications are not homeomorphic.
+
3) By the addition of a single, unique infinitely-distant point $  \infty $
 +
the $  n $-
 +
dimensional real number space $  \mathbf R  ^ {n} $,  
 +
$  n \geq  1 $,  
 +
is completed to the compact extended number space $  \widetilde{\mathbf R}  {}  ^ {n} $,  
 +
which is homeomorphic to the sphere $  S  ^ {n} $;  
 +
this homeomorphism can be demonstrated visually by [[Stereographic projection|stereographic projection]]. Another method of compactification consists in imbedding $  \mathbf R  ^ {n} $
 +
in the $  n $-
 +
dimensional real projective space $  P _ {n} ( \mathbf R ) $.  
 +
If $  n > 1 $,  
 +
these two compactifications are not homeomorphic.
  
For instance, to parallel straight lines, in the projective plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090025.png" /> the same infinitely-distant point corresponds, while different infinitely-distant points correspond to non-parallel straight lines. All infinitely-distant points of the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090026.png" /> constitute the infinitely-distant straight line. In a similar way, each plane in the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090027.png" /> is completed by an infinitely-distant straight line. All infinitely-distant points and infinitely-distant straight lines in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090028.png" /> constitute the infinitely-distant plane. In general, the infinitely-distant elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090029.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090030.png" /> constitute the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090032.png" />-dimensional infinitely-distant hyperplane.
+
For instance, to parallel straight lines, in the projective plane $  P _ {2} ( \mathbf R ) $
 +
the same infinitely-distant point corresponds, while different infinitely-distant points correspond to non-parallel straight lines. All infinitely-distant points of the plane $  P _ {2} ( \mathbf R ) $
 +
constitute the infinitely-distant straight line. In a similar way, each plane in the projective space $  P _ {3} ( \mathbf R ) $
 +
is completed by an infinitely-distant straight line. All infinitely-distant points and infinitely-distant straight lines in $  P _ {3} ( \mathbf R ) $
 +
constitute the infinitely-distant plane. In general, the infinitely-distant elements in $  P _ {n} ( \mathbf R ) $
 +
of dimension $  \leq  ( n - 2) $
 +
constitute the $  ( n - 1) $-
 +
dimensional infinitely-distant hyperplane.
  
4) A compactification of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090033.png" />-dimensional number space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090035.png" />, is also possible by imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090036.png" /> in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090037.png" />-dimensional projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090038.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090039.png" />, too, all infinitely-distant elements of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090040.png" /> constitute the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090042.png" />-dimensional infinitely-distant hyperplane. Another method of compactification consists in extending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090043.png" /> to the extended complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090044.png" />, which is the topological product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090045.png" /> copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090046.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090047.png" />, the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090049.png" /> are not homeomorphic. The infinitely-distant points of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090050.png" /> are the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090051.png" /> in which at least one coordinate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090052.png" />. The set of all infinitely-distant points of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090053.png" /> is naturally subdivided into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090054.png" /> sets
+
4) A compactification of the complex $  n $-
 +
dimensional number space $  \mathbf C  ^ {n} $,  
 +
$  n \geq  1 $,  
 +
is also possible by imbedding $  \mathbf C  ^ {n} $
 +
in the complex $  n $-
 +
dimensional projective space $  P _ {n} ( \mathbf C ) $.  
 +
In $  P _ {n} ( \mathbf C ) $,  
 +
too, all infinitely-distant elements of dimension $  \leq  ( n - 2) $
 +
constitute the complex $  ( n - 1) $-
 +
dimensional infinitely-distant hyperplane. Another method of compactification consists in extending $  \mathbf C  ^ {n} $
 +
to the extended complex space $  \overline{ {\mathbf C  ^ {n} }}\; $,  
 +
which is the topological product of $  n $
 +
copies of $  \overline{\mathbf C}\; $.  
 +
If $  n > 1 $,  
 +
the spaces $  P _ {n} ( \mathbf C ) $
 +
and $  \overline{ {\mathbf C  ^ {n} }}\; $
 +
are not homeomorphic. The infinitely-distant points of the space $  \overline{ {\mathbf C  ^ {n} }}\; $
 +
are the points $  z = ( z _ {1} \dots z _ {n} ) $
 +
in which at least one coordinate $  z _  \nu  = \infty $.  
 +
The set of all infinitely-distant points of the space $  \overline{ {\mathbf C  ^ {n} }}\; $
 +
is naturally subdivided into $  n $
 +
sets
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090055.png" /></td> </tr></table>
+
$$
 +
M _  \nu  = \
 +
\{ {z \in \overline{ {\mathbf C  ^ {n} }}\; } : {
 +
z _ {r} = \infty , z _ {k} \in \overline{ {\mathbf C }}\; , k \neq r } \}
 +
,
 +
$$
  
each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090056.png" /> having dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090057.png" />. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090058.png" /> belongs to all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090060.png" />. For real functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090061.png" />, the one-point compactification (cf. [[Aleksandrov compactification|Aleksandrov compactification]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090062.png" />, homeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090063.png" /> or to the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050900/i05090064.png" />, is also used.
+
each $  M _  \nu  $
 +
having dimension $  n - 1 $.  
 +
The point $  ( \infty \dots \infty ) $
 +
belongs to all $  M _  \nu  $,  
 +
$  \nu = 1 \dots n $.  
 +
For real functions on $  \mathbf C  ^ {n} $,  
 +
the one-point compactification (cf. [[Aleksandrov compactification|Aleksandrov compactification]]) $  {\mathbf C  ^ {n} } tilde $,  
 +
homeomorphic to $  {\mathbf R  ^ {2n} } tilde $
 +
or to the sphere $  S  ^ {2n} $,  
 +
is also used.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. General topology" , Springer  (1988)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.V. Efimov,  "Höhere Geometrie" , Deutsch. Verlag Wissenschaft.  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Hartshorne,  "Foundations of projective geometry" , Benjamin  (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B.A. Fuks,  "Introduction to the theory of analytic functions of several complex variables" , Amer. Math. Soc.  (1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1976)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. General topology" , Springer  (1988)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.V. Efimov,  "Höhere Geometrie" , Deutsch. Verlag Wissenschaft.  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Hartshorne,  "Foundations of projective geometry" , Benjamin  (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B.A. Fuks,  "Introduction to the theory of analytic functions of several complex variables" , Amer. Math. Soc.  (1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1976)  (In Russian)</TD></TR></table>

Latest revision as of 22:12, 5 June 2020


infinitely-remote elements, improper elements, ideal elements

Elements (points, straight lines, planes, etc.), generated by extending a given affine space to a compact space. Infinitely-distant elements are one of the forms in which the "actual" infinity is manifested in various mathematical theories. The continuous connection of the finite and the infinite is manifested by the fact that infinitely-distant elements are meaningful only in as far as they are considered in the context of some concrete compactification of a given "finite" space. The types of infinitely-distant elements resulting from the most frequent methods of compactification of finite-dimensional Euclidean spaces are described below.

1) If infinitely-distant elements (points $ - \infty $ and $ + \infty $) are introduced, the number axis $ \mathbf R $ is completed to the compact extended number axis $ \overline{\mathbf R}\; $, which is homeomorphic to a (closed) segment. Another way of compactification consists in imbedding $ \mathbf R $ in the real projective straight line $ P _ {1} ( \mathbf R ) = \widetilde{\mathbf R} $, which is homeomorphic to the circle $ S ^ {1} $( cf. Projective space); $ \mathbf R $ is then completed by a single, unique infinitely-distant point $ \infty $.

2) By the addition of a single, unique infinitely-distant point $ \infty $ the finite complex plane $ \mathbf C $ is completed to the compact extended complex plane $ \overline{\mathbf C}\; $, which is homeomorphic to the complex projective straight line or the Riemann sphere $ S ^ {2} $( the unit sphere in the Euclidean space $ \mathbf R ^ {3} $).

3) By the addition of a single, unique infinitely-distant point $ \infty $ the $ n $- dimensional real number space $ \mathbf R ^ {n} $, $ n \geq 1 $, is completed to the compact extended number space $ \widetilde{\mathbf R} {} ^ {n} $, which is homeomorphic to the sphere $ S ^ {n} $; this homeomorphism can be demonstrated visually by stereographic projection. Another method of compactification consists in imbedding $ \mathbf R ^ {n} $ in the $ n $- dimensional real projective space $ P _ {n} ( \mathbf R ) $. If $ n > 1 $, these two compactifications are not homeomorphic.

For instance, to parallel straight lines, in the projective plane $ P _ {2} ( \mathbf R ) $ the same infinitely-distant point corresponds, while different infinitely-distant points correspond to non-parallel straight lines. All infinitely-distant points of the plane $ P _ {2} ( \mathbf R ) $ constitute the infinitely-distant straight line. In a similar way, each plane in the projective space $ P _ {3} ( \mathbf R ) $ is completed by an infinitely-distant straight line. All infinitely-distant points and infinitely-distant straight lines in $ P _ {3} ( \mathbf R ) $ constitute the infinitely-distant plane. In general, the infinitely-distant elements in $ P _ {n} ( \mathbf R ) $ of dimension $ \leq ( n - 2) $ constitute the $ ( n - 1) $- dimensional infinitely-distant hyperplane.

4) A compactification of the complex $ n $- dimensional number space $ \mathbf C ^ {n} $, $ n \geq 1 $, is also possible by imbedding $ \mathbf C ^ {n} $ in the complex $ n $- dimensional projective space $ P _ {n} ( \mathbf C ) $. In $ P _ {n} ( \mathbf C ) $, too, all infinitely-distant elements of dimension $ \leq ( n - 2) $ constitute the complex $ ( n - 1) $- dimensional infinitely-distant hyperplane. Another method of compactification consists in extending $ \mathbf C ^ {n} $ to the extended complex space $ \overline{ {\mathbf C ^ {n} }}\; $, which is the topological product of $ n $ copies of $ \overline{\mathbf C}\; $. If $ n > 1 $, the spaces $ P _ {n} ( \mathbf C ) $ and $ \overline{ {\mathbf C ^ {n} }}\; $ are not homeomorphic. The infinitely-distant points of the space $ \overline{ {\mathbf C ^ {n} }}\; $ are the points $ z = ( z _ {1} \dots z _ {n} ) $ in which at least one coordinate $ z _ \nu = \infty $. The set of all infinitely-distant points of the space $ \overline{ {\mathbf C ^ {n} }}\; $ is naturally subdivided into $ n $ sets

$$ M _ \nu = \ \{ {z \in \overline{ {\mathbf C ^ {n} }}\; } : { z _ {r} = \infty , z _ {k} \in \overline{ {\mathbf C }}\; , k \neq r } \} , $$

each $ M _ \nu $ having dimension $ n - 1 $. The point $ ( \infty \dots \infty ) $ belongs to all $ M _ \nu $, $ \nu = 1 \dots n $. For real functions on $ \mathbf C ^ {n} $, the one-point compactification (cf. Aleksandrov compactification) $ {\mathbf C ^ {n} } tilde $, homeomorphic to $ {\mathbf R ^ {2n} } tilde $ or to the sphere $ S ^ {2n} $, is also used.

References

[1] N. Bourbaki, "Elements of mathematics. General topology" , Springer (1988) (Translated from French)
[2] N.V. Efimov, "Höhere Geometrie" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian)
[3] R. Hartshorne, "Foundations of projective geometry" , Benjamin (1967)
[4] B.A. Fuks, "Introduction to the theory of analytic functions of several complex variables" , Amer. Math. Soc. (1965) (Translated from Russian)
[5] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian)
How to Cite This Entry:
Infinitely-distant elements. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Infinitely-distant_elements&oldid=15226
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article