Namespaces
Variants
Actions

Difference between revisions of "Hopf manifold"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A complex Hopf manifold is a quotient of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102701.png" /> by the infinite [[Cyclic group|cyclic group]] of holomorphic transformations generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102703.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102704.png" />. It is usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102705.png" />. As a [[Differentiable manifold|differentiable manifold]], any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102706.png" /> is diffeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102707.png" />. Consequently, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102708.png" /> the first [[Betti number|Betti number]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h1102709.png" />; hence, such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027010.png" /> provide examples of compact complex manifolds (cf. [[Complex manifold|Complex manifold]]) not admitting any [[Kähler metric|Kähler metric]] (note that, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027012.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027013.png" />-dimensional [[Complex torus|complex torus]]). However, these manifolds do carry a particularly interesting class of Hermitian metrics (cf. [[Hermitian metric|Hermitian metric]]), namely locally conformal Kähler metrics (a Hermitian metric is locally conformal Kähler if its fundamental <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027014.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027015.png" /> satisfies the integrability condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027016.png" /> with a closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027017.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027018.png" />, called the Lee form). An example of such a metric is the projection of the following metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027019.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027020.png" />, whose Lee form is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027021.png" />. It is parallel with respect to the [[Levi-Civita connection|Levi-Civita connection]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027022.png" />. This originated the study of the more general class of generalized Hopf manifolds: locally conformal Kähler manifolds with parallel Lee form. Their geometry is closely related to Sasakian and Kählerian geometries. Generically, a compact generalized Hopf manifold arises as the total space of a flat, principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027023.png" /> bundle over a compact Sasakian orbifold and, on the other hand, fibres into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027024.png" />-dimensional complex tori over a Kähler orbifold.
+
<!--
 +
h1102701.png
 +
$#A+1 = 29 n = 1
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/H110/H.1100270 Hopf manifold
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A complex Hopf manifold is a quotient of  $  \mathbf C  ^ {n} \setminus  \{ 0 \} $
 +
by the infinite [[Cyclic group|cyclic group]] of holomorphic transformations generated by $  z \mapsto \lambda z $,  
 +
$  \lambda \in \mathbf C \setminus  \{ 0 \} $,  
 +
$  | \lambda | \neq 1 $.  
 +
It is usually denoted by $  \mathbf C H _  \lambda  ^ {n} $.  
 +
As a [[Differentiable manifold|differentiable manifold]], any $  \mathbf C H _  \lambda  ^ {n} $
 +
is diffeomorphic to $  S ^ {2n - 1 } \times S  ^ {1} $.  
 +
Consequently, when $  n \geq  2 $
 +
the first [[Betti number|Betti number]] $  b _ {1} ( \mathbf C H _  \lambda  ^ {n} ) = 1 $;  
 +
hence, such $  \mathbf C H _  \lambda  ^ {n} $
 +
provide examples of compact complex manifolds (cf. [[Complex manifold|Complex manifold]]) not admitting any [[Kähler metric|Kähler metric]] (note that, for $  n = 1 $,  
 +
$  \mathbf C H _  \lambda  ^ {1} $
 +
is a $  1 $-
 +
dimensional [[Complex torus|complex torus]]). However, these manifolds do carry a particularly interesting class of Hermitian metrics (cf. [[Hermitian metric|Hermitian metric]]), namely locally conformal Kähler metrics (a Hermitian metric is locally conformal Kähler if its fundamental $  2 $-
 +
form $  \Omega $
 +
satisfies the integrability condition $  d \Omega = \omega \wedge \Omega $
 +
with a closed $  1 $-
 +
form $  \omega $,  
 +
called the Lee form). An example of such a metric is the projection of the following metric on $  \mathbf C  ^ {n} \setminus  \{ 0 \} $:  
 +
$  g _ {0} = | z | ^ {- 2 } \delta _ {jk }  dz  ^ {j} \otimes d {\overline{z}\; }  ^ {k} $,  
 +
whose Lee form is $  \omega _ {0} = | z | ^ {- 2 } \sum ( z  ^ {j}  d {\overline{z}\; }  ^ {j} + {\overline{z}\; }  ^ {j}  dz  ^ {j} ) $.  
 +
It is parallel with respect to the [[Levi-Civita connection|Levi-Civita connection]] of $  g _ {0} $.  
 +
This originated the study of the more general class of generalized Hopf manifolds: locally conformal Kähler manifolds with parallel Lee form. Their geometry is closely related to Sasakian and Kählerian geometries. Generically, a compact generalized Hopf manifold arises as the total space of a flat, principal $  S  ^ {1} $
 +
bundle over a compact Sasakian orbifold and, on the other hand, fibres into $  1 $-
 +
dimensional complex tori over a Kähler orbifold.
  
 
I. Vaisman conjectured that a compact locally conformal Kähler manifold that is not globally conformal Kähler must have an odd Betti number. To date (1996), this has only been proved for generalized Hopf manifolds (see [[#References|[a5]]]).
 
I. Vaisman conjectured that a compact locally conformal Kähler manifold that is not globally conformal Kähler must have an odd Betti number. To date (1996), this has only been proved for generalized Hopf manifolds (see [[#References|[a5]]]).
  
It is rather difficult to characterize the Hopf manifolds among the locally conformal Kähler manifolds. However, in complex dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027025.png" /> several such characterizations are available; for instance, the only compact complex surface with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027026.png" /> and admitting conformally flat Hermitian metrics is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027027.png" /> (cf. [[#References|[a4]]]; see also [[#References|[a1]]]).
+
It is rather difficult to characterize the Hopf manifolds among the locally conformal Kähler manifolds. However, in complex dimension $  2 $
 +
several such characterizations are available; for instance, the only compact complex surface with $  b _ {1} = 1 $
 +
and admitting conformally flat Hermitian metrics is $  \mathbf C H _  \lambda  ^ {2} $(
 +
cf. [[#References|[a4]]]; see also [[#References|[a1]]]).
  
By analogy,  "real Hopf manifoldreal Hopf manifolds"  were defined as (compact) quotients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027028.png" /> by an appropriate group of conformal transformations (see [[#References|[a6]]] and [[#References|[a2]]]). Similarly,  "quaternion Hopf manifoldquaternion Hopf manifolds"  are defined as quotients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027029.png" /> (see [[#References|[a3]]]).
+
By analogy,  "real Hopf manifoldreal Hopf manifolds"  were defined as (compact) quotients of $  \mathbf R  ^ {n} \setminus  \{ 0 \} $
 +
by an appropriate group of conformal transformations (see [[#References|[a6]]] and [[#References|[a2]]]). Similarly,  "quaternion Hopf manifoldquaternion Hopf manifolds"  are defined as quotients of $  \mathbf H  ^ {n} \setminus  \{ 0 \} $(
 +
see [[#References|[a3]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.P. Boyer,  "Conformal duality and compact complex surfaces"  ''Math. Ann.'' , '''274'''  (1986)  pp. 517–526</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Gauduchon,  "Structures de Weyl–Einstein, espaces de twisteurs et variétés de type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027030.png" />"  ''J. Reine Angew. Math.'' , '''455'''  (1995)  pp. 1–50</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L. Ornea,  P. Piccinni,  "Locally conformal Kähler structures in quaternionic geometry"  ''Trans. Amer. Math. Soc.'' , '''349'''  (1997)  pp. 641–655</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Pontecorvo,  "Uniformization of conformally flat Hermitian surfaces"  ''Diff. Geom. Appl.'' , '''3'''  (1992)  pp. 295–305</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  I. Vaisman,  "Generalized Hopf manifolds"  ''Geom. Dedicata'' , '''13'''  (1982)  pp. 231–255</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  I. Vaisman,  C. Reischer,  "Local similarity manifolds"  ''Ann. Mat. Pura Appl.'' , '''35'''  (1983)  pp. 279–292</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  S. Dragomir,  L. Ornea,  "Locally conformal Kähler geometry" , Birkhäuser  (1997)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.P. Boyer,  "Conformal duality and compact complex surfaces"  ''Math. Ann.'' , '''274'''  (1986)  pp. 517–526</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P. Gauduchon,  "Structures de Weyl–Einstein, espaces de twisteurs et variétés de type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110270/h11027030.png" />"  ''J. Reine Angew. Math.'' , '''455'''  (1995)  pp. 1–50</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L. Ornea,  P. Piccinni,  "Locally conformal Kähler structures in quaternionic geometry"  ''Trans. Amer. Math. Soc.'' , '''349'''  (1997)  pp. 641–655</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Pontecorvo,  "Uniformization of conformally flat Hermitian surfaces"  ''Diff. Geom. Appl.'' , '''3'''  (1992)  pp. 295–305</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  I. Vaisman,  "Generalized Hopf manifolds"  ''Geom. Dedicata'' , '''13'''  (1982)  pp. 231–255</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  I. Vaisman,  C. Reischer,  "Local similarity manifolds"  ''Ann. Mat. Pura Appl.'' , '''35'''  (1983)  pp. 279–292</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  S. Dragomir,  L. Ornea,  "Locally conformal Kähler geometry" , Birkhäuser  (1997)</TD></TR></table>

Latest revision as of 22:11, 5 June 2020


A complex Hopf manifold is a quotient of $ \mathbf C ^ {n} \setminus \{ 0 \} $ by the infinite cyclic group of holomorphic transformations generated by $ z \mapsto \lambda z $, $ \lambda \in \mathbf C \setminus \{ 0 \} $, $ | \lambda | \neq 1 $. It is usually denoted by $ \mathbf C H _ \lambda ^ {n} $. As a differentiable manifold, any $ \mathbf C H _ \lambda ^ {n} $ is diffeomorphic to $ S ^ {2n - 1 } \times S ^ {1} $. Consequently, when $ n \geq 2 $ the first Betti number $ b _ {1} ( \mathbf C H _ \lambda ^ {n} ) = 1 $; hence, such $ \mathbf C H _ \lambda ^ {n} $ provide examples of compact complex manifolds (cf. Complex manifold) not admitting any Kähler metric (note that, for $ n = 1 $, $ \mathbf C H _ \lambda ^ {1} $ is a $ 1 $- dimensional complex torus). However, these manifolds do carry a particularly interesting class of Hermitian metrics (cf. Hermitian metric), namely locally conformal Kähler metrics (a Hermitian metric is locally conformal Kähler if its fundamental $ 2 $- form $ \Omega $ satisfies the integrability condition $ d \Omega = \omega \wedge \Omega $ with a closed $ 1 $- form $ \omega $, called the Lee form). An example of such a metric is the projection of the following metric on $ \mathbf C ^ {n} \setminus \{ 0 \} $: $ g _ {0} = | z | ^ {- 2 } \delta _ {jk } dz ^ {j} \otimes d {\overline{z}\; } ^ {k} $, whose Lee form is $ \omega _ {0} = | z | ^ {- 2 } \sum ( z ^ {j} d {\overline{z}\; } ^ {j} + {\overline{z}\; } ^ {j} dz ^ {j} ) $. It is parallel with respect to the Levi-Civita connection of $ g _ {0} $. This originated the study of the more general class of generalized Hopf manifolds: locally conformal Kähler manifolds with parallel Lee form. Their geometry is closely related to Sasakian and Kählerian geometries. Generically, a compact generalized Hopf manifold arises as the total space of a flat, principal $ S ^ {1} $ bundle over a compact Sasakian orbifold and, on the other hand, fibres into $ 1 $- dimensional complex tori over a Kähler orbifold.

I. Vaisman conjectured that a compact locally conformal Kähler manifold that is not globally conformal Kähler must have an odd Betti number. To date (1996), this has only been proved for generalized Hopf manifolds (see [a5]).

It is rather difficult to characterize the Hopf manifolds among the locally conformal Kähler manifolds. However, in complex dimension $ 2 $ several such characterizations are available; for instance, the only compact complex surface with $ b _ {1} = 1 $ and admitting conformally flat Hermitian metrics is $ \mathbf C H _ \lambda ^ {2} $( cf. [a4]; see also [a1]).

By analogy, "real Hopf manifoldreal Hopf manifolds" were defined as (compact) quotients of $ \mathbf R ^ {n} \setminus \{ 0 \} $ by an appropriate group of conformal transformations (see [a6] and [a2]). Similarly, "quaternion Hopf manifoldquaternion Hopf manifolds" are defined as quotients of $ \mathbf H ^ {n} \setminus \{ 0 \} $( see [a3]).

References

[a1] C.P. Boyer, "Conformal duality and compact complex surfaces" Math. Ann. , 274 (1986) pp. 517–526
[a2] P. Gauduchon, "Structures de Weyl–Einstein, espaces de twisteurs et variétés de type " J. Reine Angew. Math. , 455 (1995) pp. 1–50
[a3] L. Ornea, P. Piccinni, "Locally conformal Kähler structures in quaternionic geometry" Trans. Amer. Math. Soc. , 349 (1997) pp. 641–655
[a4] M. Pontecorvo, "Uniformization of conformally flat Hermitian surfaces" Diff. Geom. Appl. , 3 (1992) pp. 295–305
[a5] I. Vaisman, "Generalized Hopf manifolds" Geom. Dedicata , 13 (1982) pp. 231–255
[a6] I. Vaisman, C. Reischer, "Local similarity manifolds" Ann. Mat. Pura Appl. , 35 (1983) pp. 279–292
[a7] S. Dragomir, L. Ornea, "Locally conformal Kähler geometry" , Birkhäuser (1997)
How to Cite This Entry:
Hopf manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hopf_manifold&oldid=18689
This article was adapted from an original article by L. Ornea (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article