Namespaces
Variants
Actions

Difference between revisions of "Heinz-Kato inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
In the sequel, a capital letter denotes a bounded [[Linear operator|linear operator]] on a [[Hilbert space|Hilbert space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101401.png" />. An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101402.png" /> is said to be positive (denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101403.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101404.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101405.png" />.
+
<!--
 +
h1101401.png
 +
$#A+1 = 23 n = 0
 +
$#C+1 = 23 : ~/encyclopedia/old_files/data/H110/H.1100140 Heinz\ANDKato inequality
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
In the sequel, a capital letter denotes a bounded [[Linear operator|linear operator]] on a [[Hilbert space|Hilbert space]] $  H $.  
 +
An operator $  T $
 +
is said to be positive (denoted by $  T \geq  0 $)  
 +
if $  ( {Tx } , x ) \geq  0 $
 +
for all $  x \in H $.
  
 
The Heinz–Kato inequality is an extension of the generalized Cauchy–Schwarz inequality (cf. also [[Cauchy inequality|Cauchy inequality]]). It follows from the fact that
 
The Heinz–Kato inequality is an extension of the generalized Cauchy–Schwarz inequality (cf. also [[Cauchy inequality|Cauchy inequality]]). It follows from the fact that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101406.png" /></td> </tr></table>
+
$$
 +
\left (
 +
 
 +
\begin{array}{cc}
 +
\left ( {\left | T \right | ^ {2 \alpha } x } , x \right )  &\left ( {Tx } , y \right )  \\
 +
\left ( y , {Tx } \right )  &\left ( {\left | {T  ^ {*} } \right | ^ {2 ( 1 - \alpha ) } y } , y  \right )  \\
 +
\end{array}
 +
 +
\right ) =
 +
$$
 +
 
 +
$$
 +
=  
 +
\left (
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101407.png" /></td> </tr></table>
+
\begin{array}{cc}
 +
\left ( {\left | T \right |  ^  \alpha  x } , {\left | T \right |  ^  \alpha  x } \right )  &\left ( {\left | T \right |  ^  \alpha  x } , {\left | T \right | ^ {1 - \alpha } U  ^ {*} y } \right )  \\
 +
\left ( {\left | T \right | ^ {1 - \alpha } U  ^ {*} y } , {\left | T \right |  ^  \alpha  x } \right )  &\left ( {\left | T \right | ^ {1 - \alpha } U  ^ {*} y } , {\left | T \right | ^ {1 - \alpha } U  ^ {*} y }  \right )  \\
 +
\end{array}
 +
 +
\right )
 +
$$
  
is non-negative, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101408.png" /> is the [[Polar decomposition|polar decomposition]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h1101409.png" />.
+
is non-negative, where $  T = U | T | $
 +
is the [[Polar decomposition|polar decomposition]] of $  T $.
  
The Heinz–Kato inequality (1952; cf. [[#References|[a4]]], [[#References|[a3]]]): If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014011.png" /> are positive operators such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014014.png" />, then the following inequality holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014015.png" />:
+
The Heinz–Kato inequality (1952; cf. [[#References|[a4]]], [[#References|[a3]]]): If $  A $
 +
and $  B $
 +
are positive operators such that $  \| {Tx } \| \leq  \| {Ax } \| $
 +
and $  \| {T  ^ {*} y } \| \leq  \| {By } \| $
 +
for all $  x, y \in H $,
 +
then the following inequality holds for all $  x,y \in H $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
$$ \tag{a1 }
 +
\left | {\left ( {Tx } , y \right ) } \right | \leq  \left \| {A  ^  \alpha  x } \right \|  \left \| {B ^ {1 - \alpha } y } \right \|
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014017.png" />.
+
for all $  \alpha \in [ 0,1 ] $.
  
 
It is proved in [[#References|[a1]]] that the Heinz–Kato inequality is equivalent to:
 
It is proved in [[#References|[a1]]] that the Heinz–Kato inequality is equivalent to:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
$$ \tag{a2 }
 +
\left \| {A  ^ {2} Q } \right \| \geq  \left \| {AQA } \right \|
 +
$$
  
for arbitrary positive operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014020.png" />.
+
for arbitrary positive operators $  A $
 +
and $  Q $.
  
 
The [[Heinz inequality|Heinz inequality]] yields the Heinz–Kato inequality.
 
The [[Heinz inequality|Heinz inequality]] yields the Heinz–Kato inequality.
Line 25: Line 71:
 
On the other hand, it is shown in [[#References|[a2]]] that the [[Löwner–Heinz inequality|Löwner–Heinz inequality]] is equivalent to the following Cordes inequality (a3), although the first is an operator inequality and the latter is a norm inequality:
 
On the other hand, it is shown in [[#References|[a2]]] that the [[Löwner–Heinz inequality|Löwner–Heinz inequality]] is equivalent to the following Cordes inequality (a3), although the first is an operator inequality and the latter is a norm inequality:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
$$ \tag{a3 }
 +
\left \| {A  ^ {s} B  ^ {s} } \right \| \leq  \left \| {AB } \right \|  ^ {s}
 +
$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110140/h11014023.png" />.
+
for $  A,B \geq  0 $
 +
and 0 \leq  s \leq  1 $.
  
 
It is well known that the Heinz–Kato inequality (a1) is equivalent to the Löwner–Heinz inequality, so that the Heinz–Kato inequality, the Löwner–Heinz inequality and the Cordes inequality are mutually equivalent.
 
It is well known that the Heinz–Kato inequality (a1) is equivalent to the Löwner–Heinz inequality, so that the Heinz–Kato inequality, the Löwner–Heinz inequality and the Cordes inequality are mutually equivalent.

Latest revision as of 22:10, 5 June 2020


In the sequel, a capital letter denotes a bounded linear operator on a Hilbert space $ H $. An operator $ T $ is said to be positive (denoted by $ T \geq 0 $) if $ ( {Tx } , x ) \geq 0 $ for all $ x \in H $.

The Heinz–Kato inequality is an extension of the generalized Cauchy–Schwarz inequality (cf. also Cauchy inequality). It follows from the fact that

$$ \left ( \begin{array}{cc} \left ( {\left | T \right | ^ {2 \alpha } x } , x \right ) &\left ( {Tx } , y \right ) \\ \left ( y , {Tx } \right ) &\left ( {\left | {T ^ {*} } \right | ^ {2 ( 1 - \alpha ) } y } , y \right ) \\ \end{array} \right ) = $$

$$ = \left ( \begin{array}{cc} \left ( {\left | T \right | ^ \alpha x } , {\left | T \right | ^ \alpha x } \right ) &\left ( {\left | T \right | ^ \alpha x } , {\left | T \right | ^ {1 - \alpha } U ^ {*} y } \right ) \\ \left ( {\left | T \right | ^ {1 - \alpha } U ^ {*} y } , {\left | T \right | ^ \alpha x } \right ) &\left ( {\left | T \right | ^ {1 - \alpha } U ^ {*} y } , {\left | T \right | ^ {1 - \alpha } U ^ {*} y } \right ) \\ \end{array} \right ) $$

is non-negative, where $ T = U | T | $ is the polar decomposition of $ T $.

The Heinz–Kato inequality (1952; cf. [a4], [a3]): If $ A $ and $ B $ are positive operators such that $ \| {Tx } \| \leq \| {Ax } \| $ and $ \| {T ^ {*} y } \| \leq \| {By } \| $ for all $ x, y \in H $, then the following inequality holds for all $ x,y \in H $:

$$ \tag{a1 } \left | {\left ( {Tx } , y \right ) } \right | \leq \left \| {A ^ \alpha x } \right \| \left \| {B ^ {1 - \alpha } y } \right \| $$

for all $ \alpha \in [ 0,1 ] $.

It is proved in [a1] that the Heinz–Kato inequality is equivalent to:

$$ \tag{a2 } \left \| {A ^ {2} Q } \right \| \geq \left \| {AQA } \right \| $$

for arbitrary positive operators $ A $ and $ Q $.

The Heinz inequality yields the Heinz–Kato inequality.

On the other hand, it is shown in [a2] that the Löwner–Heinz inequality is equivalent to the following Cordes inequality (a3), although the first is an operator inequality and the latter is a norm inequality:

$$ \tag{a3 } \left \| {A ^ {s} B ^ {s} } \right \| \leq \left \| {AB } \right \| ^ {s} $$

for $ A,B \geq 0 $ and $ 0 \leq s \leq 1 $.

It is well known that the Heinz–Kato inequality (a1) is equivalent to the Löwner–Heinz inequality, so that the Heinz–Kato inequality, the Löwner–Heinz inequality and the Cordes inequality are mutually equivalent.

Additional references can be found in Heinz inequality.

References

[a1] M. Fujii, T. Furuta, "Löwner–Heinz, Cordes and Heinz–Kato inequalities" Math. Japon. , 38 (1993) pp. 73–78
[a2] T. Furuta, "Norm inequalities equivalent to Löwner–Heinz theorem" Rev. Math. Phys. , 1 (1989) pp. 135–137
[a3] T. Kato, "Notes on some inequalities for linear operators" Math. Ann. , 125 (1952) pp. 208–212
[a4] E. Heinz, "Beiträge zur Störungstheorie der Spektralzerlegung" Math. Ann. , 123 (1951) pp. 415–438
How to Cite This Entry:
Heinz-Kato inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Heinz-Kato_inequality&oldid=16896
This article was adapted from an original article by M. Fujii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article