|
|
Line 1: |
Line 1: |
− | A real [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100102.png" /> that is simultaneously a [[Lattice|lattice]] is called a vector lattice (or [[Riesz space|Riesz space]]) whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100103.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100104.png" /> is the lattice order) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100105.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100107.png" /> for all positive real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100108.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100109.png" /> is also an [[Algebra|algebra]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001011.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001012.png" />, the positive cone of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001013.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001014.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001016.png" />-algebra (a lattice-ordered algebra, Riesz algebra).
| + | <!-- |
| + | f1100102.png |
| + | $#A+1 = 53 n = 0 |
| + | $#C+1 = 53 : ~/encyclopedia/old_files/data/F110/F.1100010 \BMI f\EMI\AAhalgebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A Riesz algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001017.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001019.png" />-algebra (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001020.png" /> for "function" ) whenever
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001021.png" /></td> </tr></table>
| + | A real [[Vector space|vector space]] $ A $ |
| + | that is simultaneously a [[Lattice|lattice]] is called a vector lattice (or [[Riesz space|Riesz space]]) whenever $ x \leq y $( |
| + | $ \leq $ |
| + | is the lattice order) implies $ x + z \leq y + z $ |
| + | for all $ z \in A $ |
| + | and $ ax \leq ay $ |
| + | for all positive real numbers $ a $. |
| + | If $ A $ |
| + | is also an [[Algebra|algebra]] and $ zx \leq yz $ |
| + | and $ xz \leq yz $ |
| + | for all $ z \in A ^ {+} $, |
| + | the positive cone of $ A $, |
| + | then $ A $ |
| + | is called an $ l $- |
| + | algebra (a lattice-ordered algebra, Riesz algebra). |
| + | |
| + | A Riesz algebra $ A $ |
| + | is called an $ f $- |
| + | algebra ( $ f $ |
| + | for "function" ) whenever |
| + | |
| + | $$ |
| + | \inf ( x,y ) = 0 \Rightarrow \inf ( zx,y ) = \inf ( xz,y ) = 0 , \forall z \in A ^ {+} . |
| + | $$ |
| | | |
| This notion was introduced by G. Birkhoff and R.S. Pierce in 1956. | | This notion was introduced by G. Birkhoff and R.S. Pierce in 1956. |
| | | |
− | An important example of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001022.png" />-algebra is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001023.png" />, the space of continuous functions (cf. [[Continuous functions, space of|Continuous functions, space of]]) on some [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001024.png" />. Other examples are spaces of Baire functions, measurable functions and essentially bounded functions. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001025.png" />-Algebras play an important role in operator theory. The second commutant of a commuting subset of bounded Hermitian operators on some Hilbert space is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001026.png" />-algebra. A [[Linear operator|linear operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001027.png" /> on some vector lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001028.png" /> is called an orthomorphism whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001029.png" /> is the difference of two positive orthomorphisms; a positive orthomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001030.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001031.png" /> leaves the positive cone of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001032.png" /> invariant and satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001033.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001034.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001035.png" /> of all orthomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001036.png" /> is an important example of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001037.png" />-algebra in the theory of vector lattices. | + | An important example of an $ f $- |
| + | algebra is $ A = C ( X ) $, |
| + | the space of continuous functions (cf. [[Continuous functions, space of|Continuous functions, space of]]) on some [[Topological space|topological space]] $ X $. |
| + | Other examples are spaces of Baire functions, measurable functions and essentially bounded functions. $ f $- |
| + | Algebras play an important role in operator theory. The second commutant of a commuting subset of bounded Hermitian operators on some Hilbert space is an $ f $- |
| + | algebra. A [[Linear operator|linear operator]] $ T $ |
| + | on some vector lattice $ A $ |
| + | is called an orthomorphism whenever $ T $ |
| + | is the difference of two positive orthomorphisms; a positive orthomorphism $ S $ |
| + | on $ A $ |
| + | leaves the positive cone of $ A $ |
| + | invariant and satisfies $ \inf ( Sx,y ) = 0 $ |
| + | whenever $ \inf ( x,y ) = 0 $. |
| + | The space $ { \mathop{\rm Orth} } ( A ) $ |
| + | of all orthomorphisms of $ A $ |
| + | is an important example of an $ f $- |
| + | algebra in the theory of vector lattices. |
| | | |
− | A vector lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001038.png" /> is termed Archimedean if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001039.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001040.png" />) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001041.png" />. Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001043.png" />-algebras are automatically commutative and associative. An Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001044.png" />-algebra with unit element is semi-prime (i.e., the only nilpotent element is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001046.png" />). The latter two properties are nice examples of the interplay between order properties and algebraic properties in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001047.png" />-algebra. Many properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001048.png" /> are inherited by an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001049.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001050.png" /> with a unit element (under some additional completeness condition), such as the existence of the square root of a positive element (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001051.png" />, then there exists a unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001052.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001053.png" />) and the existence of an inverse: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001054.png" /> is the unit element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001056.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001057.png" /> exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001058.png" />. | + | A vector lattice $ A $ |
| + | is termed Archimedean if $ 0 \leq nx \leq y $( |
| + | $ n = 1,2, \dots $) |
| + | implies $ x = 0 $. |
| + | Archimedean $ f $- |
| + | algebras are automatically commutative and associative. An Archimedean $ f $- |
| + | algebra with unit element is semi-prime (i.e., the only nilpotent element is $ 0 $). |
| + | The latter two properties are nice examples of the interplay between order properties and algebraic properties in an $ f $- |
| + | algebra. Many properties of $ C ( X ) $ |
| + | are inherited by an $ f $- |
| + | algebra $ A $ |
| + | with a unit element (under some additional completeness condition), such as the existence of the square root of a positive element (if $ x \in A ^ {+} $, |
| + | then there exists a unique $ y \in A ^ {+} $ |
| + | such that $ y ^ {( 2 ) } = x $) |
| + | and the existence of an inverse: if $ e $ |
| + | is the unit element of $ A $ |
| + | and $ e \leq x $, |
| + | then $ x ^ {- 1 } $ |
| + | exists in $ A $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Birkhoff, R.S. Pierce, "Lattice-ordered rings" ''An. Acad. Brasil. Ci.'' , '''28''' (1956) pp. 41–69</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, "Riesz spaces" , '''II''' , North-Holland (1983)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Birkhoff, R.S. Pierce, "Lattice-ordered rings" ''An. Acad. Brasil. Ci.'' , '''28''' (1956) pp. 41–69</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, "Riesz spaces" , '''II''' , North-Holland (1983)</TD></TR></table> |
A real vector space $ A $
that is simultaneously a lattice is called a vector lattice (or Riesz space) whenever $ x \leq y $(
$ \leq $
is the lattice order) implies $ x + z \leq y + z $
for all $ z \in A $
and $ ax \leq ay $
for all positive real numbers $ a $.
If $ A $
is also an algebra and $ zx \leq yz $
and $ xz \leq yz $
for all $ z \in A ^ {+} $,
the positive cone of $ A $,
then $ A $
is called an $ l $-
algebra (a lattice-ordered algebra, Riesz algebra).
A Riesz algebra $ A $
is called an $ f $-
algebra ( $ f $
for "function" ) whenever
$$
\inf ( x,y ) = 0 \Rightarrow \inf ( zx,y ) = \inf ( xz,y ) = 0 , \forall z \in A ^ {+} .
$$
This notion was introduced by G. Birkhoff and R.S. Pierce in 1956.
An important example of an $ f $-
algebra is $ A = C ( X ) $,
the space of continuous functions (cf. Continuous functions, space of) on some topological space $ X $.
Other examples are spaces of Baire functions, measurable functions and essentially bounded functions. $ f $-
Algebras play an important role in operator theory. The second commutant of a commuting subset of bounded Hermitian operators on some Hilbert space is an $ f $-
algebra. A linear operator $ T $
on some vector lattice $ A $
is called an orthomorphism whenever $ T $
is the difference of two positive orthomorphisms; a positive orthomorphism $ S $
on $ A $
leaves the positive cone of $ A $
invariant and satisfies $ \inf ( Sx,y ) = 0 $
whenever $ \inf ( x,y ) = 0 $.
The space $ { \mathop{\rm Orth} } ( A ) $
of all orthomorphisms of $ A $
is an important example of an $ f $-
algebra in the theory of vector lattices.
A vector lattice $ A $
is termed Archimedean if $ 0 \leq nx \leq y $(
$ n = 1,2, \dots $)
implies $ x = 0 $.
Archimedean $ f $-
algebras are automatically commutative and associative. An Archimedean $ f $-
algebra with unit element is semi-prime (i.e., the only nilpotent element is $ 0 $).
The latter two properties are nice examples of the interplay between order properties and algebraic properties in an $ f $-
algebra. Many properties of $ C ( X ) $
are inherited by an $ f $-
algebra $ A $
with a unit element (under some additional completeness condition), such as the existence of the square root of a positive element (if $ x \in A ^ {+} $,
then there exists a unique $ y \in A ^ {+} $
such that $ y ^ {( 2 ) } = x $)
and the existence of an inverse: if $ e $
is the unit element of $ A $
and $ e \leq x $,
then $ x ^ {- 1 } $
exists in $ A $.
References
[a1] | G. Birkhoff, R.S. Pierce, "Lattice-ordered rings" An. Acad. Brasil. Ci. , 28 (1956) pp. 41–69 |
[a2] | A.C. Zaanen, "Riesz spaces" , II , North-Holland (1983) |