|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | b1106401.png |
| + | $#A+1 = 100 n = 0 |
| + | $#C+1 = 100 : ~/encyclopedia/old_files/data/B110/B.1100640 Blow\AAhup algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ==Geometric description.== | | ==Geometric description.== |
− | Associate to the punctured affine <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106401.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106402.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106403.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106404.png" />, the submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106405.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106406.png" /> of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106407.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106408.png" /> varies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b1106409.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064010.png" /> denotes the equivalence class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064011.png" /> in the projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064012.png" />-dimensional space. The closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064014.png" /> is smooth and is called the blow-up of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064015.png" /> with centre the origin. In the real case and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064016.png" /> it is equal to the [[Möbius strip|Möbius strip]]. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064017.png" /> induced by the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064018.png" /> is an isomorphism over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064019.png" />; its fibre over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064020.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064021.png" />, the exceptional divisor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064022.png" />. | + | Associate to the punctured affine $ n $- |
| + | space $ X _ {0} = \mathbf A ^ {n} \setminus \{ 0 \} $ |
| + | over $ \mathbf R $ |
| + | or $ \mathbf C $, |
| + | the submanifold $ {\widetilde{X} } _ {0} $ |
| + | of $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } $ |
| + | of points $ ( x, [ x ] ) $, |
| + | where $ x $ |
| + | varies in $ X _ {0} $ |
| + | and $ [ x ] $ |
| + | denotes the equivalence class of $ x $ |
| + | in the projective $ ( n - 1 ) $- |
| + | dimensional space. The closure $ {\widetilde{X} } $ |
| + | of $ {\widetilde{X} } _ {0} $ |
| + | is smooth and is called the blow-up of $ X = \mathbf A ^ {n} $ |
| + | with centre the origin. In the real case and for $ n = 2 $ |
| + | it is equal to the [[Möbius strip|Möbius strip]]. The mapping $ \pi : { {\widetilde{X} } } \rightarrow X $ |
| + | induced by the projection $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } \rightarrow \mathbf A ^ {n} $ |
| + | is an isomorphism over $ X _ {0} $; |
| + | its fibre over $ 0 $ |
| + | is $ \mathbf P ^ {n - 1 } $, |
| + | the exceptional divisor of $ \pi $. |
| | | |
− | The strict transform <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064023.png" /> of a subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064025.png" /> is the closure of the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064027.png" />. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064028.png" /> is the cuspidal curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064029.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064030.png" /> parametrized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064031.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064032.png" /> is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064033.png" /> and hence is smooth. This forms the simplest example of [[Resolution of singularities|resolution of singularities]] by a blow-up. | + | The strict transform $ Y ^ \prime $ |
| + | of a subvariety $ Y $ |
| + | of $ X $ |
| + | is the closure of the inverse image $ \pi ^ {-1 } ( Y \setminus \{ 0 \} ) $ |
| + | in $ {\widetilde{X} } $. |
| + | For instance, if $ Y $ |
| + | is the cuspidal curve $ x ^ {3} = y ^ {2} $ |
| + | in $ \mathbf A ^ {2} $ |
| + | parametrized by $ ( t ^ {2} ,t ^ {3} ) $, |
| + | then $ Y ^ \prime $ |
| + | is given by $ ( t ^ {2} ,t ^ {3} ,t ) $ |
| + | and hence is smooth. This forms the simplest example of [[Resolution of singularities|resolution of singularities]] by a blow-up. |
| | | |
− | Higher-dimensional smooth centres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064034.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064035.png" /> are blown up by decomposing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064036.png" /> locally along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064037.png" /> into a Cartesian product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064038.png" /> of submanifolds, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064039.png" /> is transversal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064040.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064041.png" /> a point. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064042.png" /> is given locally as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064043.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064044.png" /> denotes the blow-up of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064045.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064046.png" />. | + | Higher-dimensional smooth centres $ C $ |
| + | in $ \mathbf A ^ {n} $ |
| + | are blown up by decomposing $ \mathbf A ^ {n} $ |
| + | locally along $ C $ |
| + | into a Cartesian product $ X _ {1} \times X _ {2} $ |
| + | of submanifolds, where $ X _ {1} $ |
| + | is transversal to $ C $ |
| + | with $ X _ {1} \cap C = \{ p \} $ |
| + | a point. Then $ {\widetilde{X} } $ |
| + | is given locally as $ { {X _ {1} } tilde } \times X _ {2} $, |
| + | where $ { {X _ {1} } tilde } $ |
| + | denotes the blow-up of $ X _ {1} $ |
| + | in $ p $. |
| | | |
| ==Algebraic description.== | | ==Algebraic description.== |
− | See also [[#References|[a1]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064047.png" /> be a [[Noetherian ring|Noetherian ring]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064048.png" /> be an [[Ideal|ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064049.png" />. Define the blow-up algebra (or Rees algebra) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064050.png" /> as the graded ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064051.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064052.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064053.png" />th power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064055.png" />). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064056.png" /> is the blow-up of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064057.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064058.png" /> and coincides with the above construction when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064059.png" /> is the polynomial ring in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064060.png" /> variables over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064061.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064062.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064063.png" /> denotes the [[Algebraic variety|algebraic variety]] or [[Scheme|scheme]] given by all homogeneous prime ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064064.png" /> not containing the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064065.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064066.png" /> is the [[Affine variety|affine variety]] or scheme of all prime ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064067.png" />. | + | See also [[#References|[a1]]]. Let $ A $ |
| + | be a [[Noetherian ring|Noetherian ring]] and let $ I $ |
| + | be an [[Ideal|ideal]] of $ A $. |
| + | Define the blow-up algebra (or Rees algebra) of $ I $ |
| + | as the graded ring $ S = \oplus _ {k \geq 0 } I ^ {k} $( |
| + | where $ I ^ {k} $ |
| + | denotes the $ k $ |
| + | th power of $ I $, |
| + | $ I ^ {0} = A $). |
| + | Then $ Bl _ {I} ( A ) = { \mathop{\rm Proj} } S $ |
| + | is the blow-up of $ { \mathop{\rm Spec} } A $ |
| + | with centre $ I $ |
| + | and coincides with the above construction when $ A $ |
| + | is the polynomial ring in $ n $ |
| + | variables over $ \mathbf R $ |
| + | or $ \mathbf C $. |
| + | Here, $ { \mathop{\rm Proj} } S $ |
| + | denotes the [[Algebraic variety|algebraic variety]] or [[Scheme|scheme]] given by all homogeneous prime ideals of $ S $ |
| + | not containing the ideal $ S _ {+} = \oplus _ {k > 0 } I ^ {k} $, |
| + | and $ { \mathop{\rm Spec} } A $ |
| + | is the [[Affine variety|affine variety]] or scheme of all prime ideals of $ A $. |
| | | |
| ==Local description.== | | ==Local description.== |
− | Any generator system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064068.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064069.png" /> gives rise to a covering | + | Any generator system $ x _ {1} \dots x _ {k} $ |
| + | of $ I $ |
| + | gives rise to a covering |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064070.png" /></td> </tr></table>
| + | $$ |
| + | Bl _ {I} ( A ) = \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ {I / {x _ {j} } } ] = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064071.png" /></td> </tr></table>
| + | $$ |
| + | = |
| + | \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ { {x _ {i} } / {x _ {j} } } , 1 \leq i \leq k ] |
| + | $$ |
| | | |
− | by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064072.png" /> affine charts, the quotients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064073.png" /> being considered as elements of the localization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064074.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064075.png" /> (cf. [[Localization in a commutative algebra|Localization in a commutative algebra]]). In the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064076.png" />th chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064077.png" />, the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064078.png" /> is induced by the inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064079.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064080.png" /> an ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064081.png" /> contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064082.png" />, the strict transform of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064083.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064084.png" />. The exceptional divisor has the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064085.png" />. If the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064086.png" /> given by the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064087.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064088.png" /> is smooth, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064089.png" /> is generated by part of a regular parameter system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064091.png" /> is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064092.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064093.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064094.png" />, and by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064095.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064096.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064097.png" />. | + | by $ k $ |
| + | affine charts, the quotients $ { {x _ {i} } / {x _ {j} } } $ |
| + | being considered as elements of the localization of $ A $ |
| + | at $ x _ {j} $( |
| + | cf. [[Localization in a commutative algebra|Localization in a commutative algebra]]). In the $ j $ |
| + | th chart $ {\widetilde{X} } _ {j} $, |
| + | the morphism $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ |
| + | is induced by the inclusion $ A \subset A [ {I / {x _ {j} } } ] $. |
| + | For $ J $ |
| + | an ideal of $ A $ |
| + | contained in $ I $, |
| + | the strict transform of $ J $ |
| + | is $ J ^ \prime = \cup _ {n \geq 0 } x _ {j} ^ {- n } ( J \cap I ^ {n} ) {\widetilde{A} } _ {j} $. |
| + | The exceptional divisor has the equation $ x _ {j} = 0 $. |
| + | If the centre $ C $ |
| + | given by the ideal $ I $ |
| + | of $ A $ |
| + | is smooth, $ I $ |
| + | is generated by part of a regular parameter system of $ A $ |
| + | and $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ |
| + | is given by $ x _ {i} \rightarrow x _ {i} x _ {j} $ |
| + | for $ i \leq k $, |
| + | $ i \neq j $, |
| + | and by $ x _ {i} \rightarrow x _ {i} $ |
| + | for $ i > k $ |
| + | or $ i = j $. |
| | | |
| ==Properties.== | | ==Properties.== |
− | Different centres may induce the same blow-up. A composite of blow-ups is again a blow-up. Blowing up commutes with [[Base change|base change]]; the strict transform of a variety equals its blow-up in the given centre. The morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064098.png" /> is birational, proper and surjective (cf. [[Birational morphism|Birational morphism]]; [[Proper morphism|Proper morphism]]; [[Surjection|Surjection]]). Any birational projective morphism of quasi-projective varieties (cf. [[Quasi-projective scheme|Quasi-projective scheme]]) is the blowing up of a suitable centre. The singularities of varieties over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b11064099.png" /> can be resolved by a finite sequence of blow-ups of smooth centres [[#References|[a2]]]. In positive characteristic, this has only been proven for dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110640/b110640100.png" /> [[#References|[a3]]]. See [[#References|[a4]]] for a survey on resolution of singularities, and [[#References|[a5]]] for an account on the role of blow-up algebras in commutative algebra. | + | Different centres may induce the same blow-up. A composite of blow-ups is again a blow-up. Blowing up commutes with [[Base change|base change]]; the strict transform of a variety equals its blow-up in the given centre. The morphism $ \pi $ |
| + | is birational, proper and surjective (cf. [[Birational morphism|Birational morphism]]; [[Proper morphism|Proper morphism]]; [[Surjection|Surjection]]). Any birational projective morphism of quasi-projective varieties (cf. [[Quasi-projective scheme|Quasi-projective scheme]]) is the blowing up of a suitable centre. The singularities of varieties over a field of characteristic $ 0 $ |
| + | can be resolved by a finite sequence of blow-ups of smooth centres [[#References|[a2]]]. In positive characteristic, this has only been proven for dimension $ \leq 3 $[[#References|[a3]]]. See [[#References|[a4]]] for a survey on resolution of singularities, and [[#References|[a5]]] for an account on the role of blow-up algebras in commutative algebra. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero" ''Ann. of Math.'' , '''79''' (1964) pp. 109–326</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Abhyankar, "Resolution of singularities of embedded algebraic surfaces" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Lipman, "Introduction to resolution of singularities" , ''Proc. Symp. Pure Math.'' , '''29''' , Amer. Math. Soc. (1975) pp. 187–230</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W. Vasconcelos, "Arithmetic of blowup algebras" , ''Lecture Notes Ser.'' , '''195''' , London Math. Soc. (1994)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero" ''Ann. of Math.'' , '''79''' (1964) pp. 109–326 {{MR|0199184}} {{ZBL|0122.38603}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Abhyankar, "Resolution of singularities of embedded algebraic surfaces" , Acad. Press (1966) {{MR|0217069}} {{ZBL|0147.20504}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Lipman, "Introduction to resolution of singularities" , ''Proc. Symp. Pure Math.'' , '''29''' , Amer. Math. Soc. (1975) pp. 187–230 {{MR|0389901}} {{ZBL|0306.14007}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W. Vasconcelos, "Arithmetic of blowup algebras" , ''Lecture Notes Ser.'' , '''195''' , London Math. Soc. (1994) {{MR|1275840}} {{ZBL|0813.13008}} </TD></TR></table> |
Geometric description.
Associate to the punctured affine $ n $-
space $ X _ {0} = \mathbf A ^ {n} \setminus \{ 0 \} $
over $ \mathbf R $
or $ \mathbf C $,
the submanifold $ {\widetilde{X} } _ {0} $
of $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } $
of points $ ( x, [ x ] ) $,
where $ x $
varies in $ X _ {0} $
and $ [ x ] $
denotes the equivalence class of $ x $
in the projective $ ( n - 1 ) $-
dimensional space. The closure $ {\widetilde{X} } $
of $ {\widetilde{X} } _ {0} $
is smooth and is called the blow-up of $ X = \mathbf A ^ {n} $
with centre the origin. In the real case and for $ n = 2 $
it is equal to the Möbius strip. The mapping $ \pi : { {\widetilde{X} } } \rightarrow X $
induced by the projection $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } \rightarrow \mathbf A ^ {n} $
is an isomorphism over $ X _ {0} $;
its fibre over $ 0 $
is $ \mathbf P ^ {n - 1 } $,
the exceptional divisor of $ \pi $.
The strict transform $ Y ^ \prime $
of a subvariety $ Y $
of $ X $
is the closure of the inverse image $ \pi ^ {-1 } ( Y \setminus \{ 0 \} ) $
in $ {\widetilde{X} } $.
For instance, if $ Y $
is the cuspidal curve $ x ^ {3} = y ^ {2} $
in $ \mathbf A ^ {2} $
parametrized by $ ( t ^ {2} ,t ^ {3} ) $,
then $ Y ^ \prime $
is given by $ ( t ^ {2} ,t ^ {3} ,t ) $
and hence is smooth. This forms the simplest example of resolution of singularities by a blow-up.
Higher-dimensional smooth centres $ C $
in $ \mathbf A ^ {n} $
are blown up by decomposing $ \mathbf A ^ {n} $
locally along $ C $
into a Cartesian product $ X _ {1} \times X _ {2} $
of submanifolds, where $ X _ {1} $
is transversal to $ C $
with $ X _ {1} \cap C = \{ p \} $
a point. Then $ {\widetilde{X} } $
is given locally as $ { {X _ {1} } tilde } \times X _ {2} $,
where $ { {X _ {1} } tilde } $
denotes the blow-up of $ X _ {1} $
in $ p $.
Algebraic description.
See also [a1]. Let $ A $
be a Noetherian ring and let $ I $
be an ideal of $ A $.
Define the blow-up algebra (or Rees algebra) of $ I $
as the graded ring $ S = \oplus _ {k \geq 0 } I ^ {k} $(
where $ I ^ {k} $
denotes the $ k $
th power of $ I $,
$ I ^ {0} = A $).
Then $ Bl _ {I} ( A ) = { \mathop{\rm Proj} } S $
is the blow-up of $ { \mathop{\rm Spec} } A $
with centre $ I $
and coincides with the above construction when $ A $
is the polynomial ring in $ n $
variables over $ \mathbf R $
or $ \mathbf C $.
Here, $ { \mathop{\rm Proj} } S $
denotes the algebraic variety or scheme given by all homogeneous prime ideals of $ S $
not containing the ideal $ S _ {+} = \oplus _ {k > 0 } I ^ {k} $,
and $ { \mathop{\rm Spec} } A $
is the affine variety or scheme of all prime ideals of $ A $.
Local description.
Any generator system $ x _ {1} \dots x _ {k} $
of $ I $
gives rise to a covering
$$
Bl _ {I} ( A ) = \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ {I / {x _ {j} } } ] =
$$
$$
=
\cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ { {x _ {i} } / {x _ {j} } } , 1 \leq i \leq k ]
$$
by $ k $
affine charts, the quotients $ { {x _ {i} } / {x _ {j} } } $
being considered as elements of the localization of $ A $
at $ x _ {j} $(
cf. Localization in a commutative algebra). In the $ j $
th chart $ {\widetilde{X} } _ {j} $,
the morphism $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $
is induced by the inclusion $ A \subset A [ {I / {x _ {j} } } ] $.
For $ J $
an ideal of $ A $
contained in $ I $,
the strict transform of $ J $
is $ J ^ \prime = \cup _ {n \geq 0 } x _ {j} ^ {- n } ( J \cap I ^ {n} ) {\widetilde{A} } _ {j} $.
The exceptional divisor has the equation $ x _ {j} = 0 $.
If the centre $ C $
given by the ideal $ I $
of $ A $
is smooth, $ I $
is generated by part of a regular parameter system of $ A $
and $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $
is given by $ x _ {i} \rightarrow x _ {i} x _ {j} $
for $ i \leq k $,
$ i \neq j $,
and by $ x _ {i} \rightarrow x _ {i} $
for $ i > k $
or $ i = j $.
Properties.
Different centres may induce the same blow-up. A composite of blow-ups is again a blow-up. Blowing up commutes with base change; the strict transform of a variety equals its blow-up in the given centre. The morphism $ \pi $
is birational, proper and surjective (cf. Birational morphism; Proper morphism; Surjection). Any birational projective morphism of quasi-projective varieties (cf. Quasi-projective scheme) is the blowing up of a suitable centre. The singularities of varieties over a field of characteristic $ 0 $
can be resolved by a finite sequence of blow-ups of smooth centres [a2]. In positive characteristic, this has only been proven for dimension $ \leq 3 $[a3]. See [a4] for a survey on resolution of singularities, and [a5] for an account on the role of blow-up algebras in commutative algebra.
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
[a2] | H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero" Ann. of Math. , 79 (1964) pp. 109–326 MR0199184 Zbl 0122.38603 |
[a3] | S. Abhyankar, "Resolution of singularities of embedded algebraic surfaces" , Acad. Press (1966) MR0217069 Zbl 0147.20504 |
[a4] | J. Lipman, "Introduction to resolution of singularities" , Proc. Symp. Pure Math. , 29 , Amer. Math. Soc. (1975) pp. 187–230 MR0389901 Zbl 0306.14007 |
[a5] | W. Vasconcelos, "Arithmetic of blowup algebras" , Lecture Notes Ser. , 195 , London Math. Soc. (1994) MR1275840 Zbl 0813.13008 |