Namespaces
Variants
Actions

Difference between revisions of "Stanley-Reisner ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX partly done)
(TeX partly done)
Line 15: Line 15:
 
$$
 
$$
  
One may thus write <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052018.png" /> more compactly as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052019.png" />.
+
One may thus define $I_\Delta$ more compactly as $I_\Delta = \left\langle{ x^F : F \not\in \Delta }\right\rangle$.
  
It is easy to verify that the Krull dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052020.png" /> (cf. also [[Dimension|Dimension]]) is one greater than the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052021.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052022.png" />).
+
It is easy to verify that the Krull dimension of $k[\Delta]$ (cf. also [[Dimension]]) is one greater than the dimension of $\Delta$ ($\dim k[\Delta] = (\dim \Delta) + 1$).
  
Recall that the Hilbert series of a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052023.png" />-graded module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052024.png" /> over a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052025.png" />-algebra is defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052026.png" />. The Hilbert series of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052027.png" /> may be described from the combinatorics of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052028.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052029.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052030.png" />, and call <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052031.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052033.png" />-vector of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052034.png" />. Then
+
Recall that the ''Hilbert series'' of a finitely-generated $\mathbf{Z}$-graded module $M$ over a finitely-generated $k$-algebra is defined by  
 +
$$
 +
F(M,\lambda) = \sum_{i\in\mathbf{Z}} \dim_k M_i \, \lambda^i
 +
$$
 +
The Hilbert series of $k[\Delta]$ may be described from the combinatorics of $\Delta$. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052029.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052030.png" />, and call <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052031.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052033.png" />-vector of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052034.png" />. Then
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052035.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130520/s13052035.png" /></td> </tr></table>

Revision as of 20:03, 23 January 2018

Stanley–Reisner face ring, face ring

The Stanley–Reisner ring of a simplicial complex $\Delta$ over a field $k$ is the quotient ring $$ k[\Delta] = k[x_1,\ldots,x_n]/I_\Delta $$ where $\{x_1,\ldots,x_n\}$ are the vertices of $\Delta$, $k[x_1,\ldots,x_n]$ denotes the polynomial ring over $k$ in the variables $\{x_1,\ldots,x_n\}$, and $I_\Delta$ is the ideal in $k[x_1,\ldots,x_n]$ generated by the non-faces of $\Delta$, i.e., $$ I_\Delta = \left\langle{ x_{i_1}\cdots x_{i_j} : \{i_1,\ldots,i_j\} \not\in \Delta }\right\rangle \ . $$

The support of any monomial in $k[\Delta]$ is a face of $\Delta$. In particular, the square-free monomials of $k[\Delta]$ correspond bijectively to the faces of $\Delta$, and are therefore called the face-monomials $$ x^F = \prod_{x_i\in F} x_i \ . $$

One may thus define $I_\Delta$ more compactly as $I_\Delta = \left\langle{ x^F : F \not\in \Delta }\right\rangle$.

It is easy to verify that the Krull dimension of $k[\Delta]$ (cf. also Dimension) is one greater than the dimension of $\Delta$ ($\dim k[\Delta] = (\dim \Delta) + 1$).

Recall that the Hilbert series of a finitely-generated $\mathbf{Z}$-graded module $M$ over a finitely-generated $k$-algebra is defined by $$ F(M,\lambda) = \sum_{i\in\mathbf{Z}} \dim_k M_i \, \lambda^i $$ The Hilbert series of $k[\Delta]$ may be described from the combinatorics of $\Delta$. Let , let , and call the -vector of . Then

where the sequence , called the -vector of , may be derived from the -vector of (and vice versa) by the equation

The mapping from to allows properties defined for rings to be naturally extended to simplicial complexes. The most well-known and useful example is Cohen–Macaulayness: A simplicial complex is defined to be Cohen–Macaulay (over the field ) when is Cohen–Macaulay (cf. also Cohen–Macaulay ring). The utility of this extension is demonstrated in the proof that if (the geometric realization of) a simplicial complex is homeomorphic to a sphere, then its -vector satisfies a condition called the upper bound conjecture (for details, see [a1], Sect. II.3,4). The statement of this result requires no algebra, but the proof relies heavily upon the Stanley–Reisner ring and Cohen–Macaulayness. Many other applications of the Stanley–Reisner ring may be found in [a1], Chaps. II, III.

Finally, there is an anti-commutative version of the Stanley–Reisner ring, called the exterior face ring or indicator algebra, in which the polynomial ring in the definition of is replaced by the exterior algebra .

References

[a1] Richard P. Stanley, "Combinatorics and commutative algebra" , (2nd ed.) Birkhäuser (1996) ISBN 0-81764-369-9 Zbl 1157.13302 Zbl 0838.13008
How to Cite This Entry:
Stanley-Reisner ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stanley-Reisner_ring&oldid=42778
This article was adapted from an original article by Art Duval (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article