Difference between revisions of "P-space"
(→-space in the sense of Morita.: cf Morita conjectures) |
(Add section: P-space in the sense of Arkhangel'skii. Points to feathered space.) |
||
Line 4: | Line 4: | ||
Non-Archimedean ordered fields are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002012.png" />-spaces, in their order topology; thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002013.png" />-spaces occur in non-standard analysis. Another source of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002014.png" />-spaces is formed by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002015.png" />-metrizable spaces of [[#References|[a5]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002016.png" /> is a regular cardinal number (cf. also [[Cardinal number|Cardinal number]]), then an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002018.png" />-metrizable space is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002019.png" /> with a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002020.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002021.png" /> to the ordinal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002022.png" /> that acts like a [[Metric|metric]]: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002023.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002024.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002026.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002027.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002029.png" />-metric. A topology is formed, as for a [[Metric space|metric space]], using <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002030.png" />-balls: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002031.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002032.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002033.png" />-metrizable spaces are exactly the strongly zero-dimensional metric spaces [[#References|[a8]]] (cf. also [[Zero-dimensional space|Zero-dimensional space]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002034.png" /> is uncountable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002035.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002036.png" />-space (and conversely). | Non-Archimedean ordered fields are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002012.png" />-spaces, in their order topology; thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002013.png" />-spaces occur in non-standard analysis. Another source of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002014.png" />-spaces is formed by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002015.png" />-metrizable spaces of [[#References|[a5]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002016.png" /> is a regular cardinal number (cf. also [[Cardinal number|Cardinal number]]), then an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002018.png" />-metrizable space is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002019.png" /> with a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002020.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002021.png" /> to the ordinal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002022.png" /> that acts like a [[Metric|metric]]: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002023.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002024.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002026.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002027.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002029.png" />-metric. A topology is formed, as for a [[Metric space|metric space]], using <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002030.png" />-balls: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002031.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002032.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002033.png" />-metrizable spaces are exactly the strongly zero-dimensional metric spaces [[#References|[a8]]] (cf. also [[Zero-dimensional space|Zero-dimensional space]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002034.png" /> is uncountable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002035.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002036.png" />-space (and conversely). | ||
− | One also employs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002037.png" />-spaces in the investigation of | + | One also employs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002037.png" />-spaces in the investigation of [[box product]]s [[#References|[a7]]]. If a product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002038.png" /> is endowed with the box topology, then the equivalence relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002039.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002040.png" /> being finite defines a quotient space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002041.png" />, denoted <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002042.png" />, that is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002043.png" />-space. The quotient mapping is open and the box product and its quotient share many properties. |
==<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002044.png" />-space in the sense of Morita.== | ==<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002044.png" />-space in the sense of Morita.== | ||
Line 12: | Line 12: | ||
There is a characterization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002062.png" />-spaces in terms of topological games [[#References|[a6]]]; let two players, I and II, play the following game on a topological space: player I chooses open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002063.png" /> and player II chooses closed sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002064.png" />, with the proviso that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002065.png" />. Player II wins the play if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002066.png" />. One can show that Player II has a winning strategy if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002067.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002068.png" />-space. | There is a characterization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002062.png" />-spaces in terms of topological games [[#References|[a6]]]; let two players, I and II, play the following game on a topological space: player I chooses open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002063.png" /> and player II chooses closed sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002064.png" />, with the proviso that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002065.png" />. Player II wins the play if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002066.png" />. One can show that Player II has a winning strategy if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002067.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002068.png" />-space. | ||
+ | |||
+ | ==$P$-space in the sense of Arkhangel'skii.== | ||
+ | A completely-regular Hausdorff space having a [[feathering]] in some Hausdorff compactification: a [[feathered space]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Chiba, T.C. Przymusiński, M.E. Rudin, "Normality of products and Morita's conjectures" ''Topol. Appl.'' , '''22''' (1986) pp. 19–32</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Gillman, M. Henriksen, "Concerning rings of continuous functions" ''Trans. Amer. Math. Soc.'' , '''77''' (1954) pp. 340–362</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Morita, "Products of normal spaces with metric spaces" ''Math. Ann.'' , '''154''' (1964) pp. 365–382</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> K. Morita, "Some problems on normality of products of spaces" J. Novák (ed.) , ''Proc. Fourth Prague Topological Symp. (Prague, August 1976)'' , Soc. Czech. Math. and Physicists , Prague (1977) pp. 296–297 (Part B: Contributed papers)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Sikorski, "Remarks on some topological spaces of high power" ''Fundam. Math.'' , '''37''' (1950) pp. 125–136</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> R. Telgárski, "A characterization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002069.png" />-spaces" ''Proc. Japan Acad.'' , '''51''' (1975) pp. 802–807</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> S.W. Williams, "Box products" K. Kunen (ed.) J.E. Vaughan (ed.) , ''Handbook of Set Theoretic Topology'' , North-Holland (1984) pp. Chap. 4; 169–200</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> J. de Groot, "Non-Archimedean metrics in topology" ''Proc. Amer. Math. Soc.'' , '''7''' (1956) pp. 948–953</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Chiba, T.C. Przymusiński, M.E. Rudin, "Normality of products and Morita's conjectures" ''Topol. Appl.'' , '''22''' (1986) pp. 19–32</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Gillman, M. Henriksen, "Concerning rings of continuous functions" ''Trans. Amer. Math. Soc.'' , '''77''' (1954) pp. 340–362</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Morita, "Products of normal spaces with metric spaces" ''Math. Ann.'' , '''154''' (1964) pp. 365–382</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> K. Morita, "Some problems on normality of products of spaces" J. Novák (ed.) , ''Proc. Fourth Prague Topological Symp. (Prague, August 1976)'' , Soc. Czech. Math. and Physicists , Prague (1977) pp. 296–297 (Part B: Contributed papers)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Sikorski, "Remarks on some topological spaces of high power" ''Fundam. Math.'' , '''37''' (1950) pp. 125–136</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> R. Telgárski, "A characterization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130020/p13002069.png" />-spaces" ''Proc. Japan Acad.'' , '''51''' (1975) pp. 802–807</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> S.W. Williams, "Box products" K. Kunen (ed.) J.E. Vaughan (ed.) , ''Handbook of Set Theoretic Topology'' , North-Holland (1984) pp. Chap. 4; 169–200</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> J. de Groot, "Non-Archimedean metrics in topology" ''Proc. Amer. Math. Soc.'' , '''7''' (1956) pp. 948–953</TD></TR></table> |
Revision as of 20:03, 23 September 2017
-space in the sense of Gillman–Henriksen.
A -space as defined in [a2] is a completely-regular space in which every point is a -point, i.e., every fixed prime ideal in the ring of real-valued continuous functions is maximal (cf. also Maximal ideal; Prime ideal); this is equivalent to saying that every -subset is open (cf. also Set of type ()). The latter condition is used to define -spaces among general topological spaces. In [a5] these spaces were called -additive, because countable unions of closed sets are closed.
Non-Archimedean ordered fields are -spaces, in their order topology; thus, -spaces occur in non-standard analysis. Another source of -spaces is formed by the -metrizable spaces of [a5]. If is a regular cardinal number (cf. also Cardinal number), then an -metrizable space is a set with a mapping from to the ordinal that acts like a metric: if and only if ; and ; is called an -metric. A topology is formed, as for a metric space, using -balls: , where . The -metrizable spaces are exactly the strongly zero-dimensional metric spaces [a8] (cf. also Zero-dimensional space). If is uncountable, then is a -space (and conversely).
One also employs -spaces in the investigation of box products [a7]. If a product is endowed with the box topology, then the equivalence relation defined by being finite defines a quotient space of , denoted , that is a -space. The quotient mapping is open and the box product and its quotient share many properties.
-space in the sense of Morita.
A -space as defined in [a3] is a topological space with the following covering property: Let be a set and let be a family of open sets (indexed by the set of finite sequences of elements of ). Then there is a family of closed sets such that and whenever a sequence satisfies , then also . K. Morita introduced -spaces to characterize spaces whose products with all metrizable spaces are normal (cf. also Normal space): A space is a normal (paracompact) -space if and only if its product with every metrizable space is normal (paracompact, cf. also Paracompact space).
Morita [a4] conjectured that this characterization is symmetric in that a space is metrizable if and only if its product with every normal -space is normal. K. Chiba, T.C. Przymusiński and M.E. Rudin [a1] showed that the conjecture is true if , i.e. Gödel's axiom of constructibility, holds (cf. also Gödel constructive set). These authors also showed that another conjecture of Morita is true without any extra set-theoretic axioms: If is normal for every normal space , then is discrete: cf. Morita conjectures.
There is a characterization of -spaces in terms of topological games [a6]; let two players, I and II, play the following game on a topological space: player I chooses open sets and player II chooses closed sets , with the proviso that . Player II wins the play if . One can show that Player II has a winning strategy if and only if is a -space.
$P$-space in the sense of Arkhangel'skii.
A completely-regular Hausdorff space having a feathering in some Hausdorff compactification: a feathered space.
References
[a1] | K. Chiba, T.C. Przymusiński, M.E. Rudin, "Normality of products and Morita's conjectures" Topol. Appl. , 22 (1986) pp. 19–32 |
[a2] | L. Gillman, M. Henriksen, "Concerning rings of continuous functions" Trans. Amer. Math. Soc. , 77 (1954) pp. 340–362 |
[a3] | K. Morita, "Products of normal spaces with metric spaces" Math. Ann. , 154 (1964) pp. 365–382 |
[a4] | K. Morita, "Some problems on normality of products of spaces" J. Novák (ed.) , Proc. Fourth Prague Topological Symp. (Prague, August 1976) , Soc. Czech. Math. and Physicists , Prague (1977) pp. 296–297 (Part B: Contributed papers) |
[a5] | R. Sikorski, "Remarks on some topological spaces of high power" Fundam. Math. , 37 (1950) pp. 125–136 |
[a6] | R. Telgárski, "A characterization of -spaces" Proc. Japan Acad. , 51 (1975) pp. 802–807 |
[a7] | S.W. Williams, "Box products" K. Kunen (ed.) J.E. Vaughan (ed.) , Handbook of Set Theoretic Topology , North-Holland (1984) pp. Chap. 4; 169–200 |
[a8] | J. de Groot, "Non-Archimedean metrics in topology" Proc. Amer. Math. Soc. , 7 (1956) pp. 948–953 |
P-space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=P-space&oldid=35013