Namespaces
Variants
Actions

Difference between revisions of "Separable algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Texed, removed comment section and reorganized the article in two parts: over a field (which was the main part of the old art.) and over a ring (which was the old comment section))
m (links)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{MSC|16}}
 
{{TEX|done}}
 
{{TEX|done}}
  
====separable algebra over a field====
+
====Separable algebra over a field====
A finite-dimensional semi-simple associative algebra $A$ over a field $k$ that remains semi-simple under any extension $K$ of $k$ (that is, the algebra $K \otimes_k A$ is semi-simple for any field $K \supseteq k$, cf. [[Semi-simple algebra|Semi-simple algebra]]). An algebra $A$ is separable if and only if the centres of the simple components of this algebra (see [[Associative rings and algebras|Associative rings and algebras]]) are separable field extensions of $k$ (cf. [[Separable extension|Separable extension]]).
+
A finite-dimensional semi-simple associative algebra $A$ over a field $k$ that remains semi-simple under any extension $K$ of $k$ (that is, the algebra $K \otimes_k A$ is semi-simple for any field $K \supseteq k$, cf. [[Semi-simple algebra|Semi-simple algebra]]). An algebra $A$ is separable if and only if the centres of the simple components of this algebra (see [[Associative rings and algebras|Associative rings and algebras]]) are separable field extensions of $k$ (cf. [[Separable extension]]).
  
====separable algebra over a ring====
+
====Separable algebra over a ring====
An algebra $A$ over a commutative ring $R$ is separable if $A$ is projective as a left $A \otimes_R A^o = A^e$-module (cf. [[Projective module|Projective module]]). Here, $A^o$ is the opposite algebra of $A$.
+
An algebra $A$ over a commutative ring $R$ is separable if $A$ is projective as a left $A \otimes_R A^\textrm{o} = A^e$-module (cf. [[Projective module|Projective module]]). Here, $A^\textrm{o}$ is the [[opposite algebra]] of $A$.
  
An algebra that is separable over its centre is called an [[Azumaya algebra|Azumaya algebra]]. These algebras are important in the theory of the [[Brauer group|Brauer group]] of a commutative ring or scheme.
+
An algebra that is separable over its centre is called an [[Azumaya algebra]]. These algebras are important in the theory of the [[Brauer group]] of a commutative ring or scheme.
  
 
====References====
 
====References====
 
{|
 
{|
 
|-
 
|-
|valign="top"|{{Ref|Wae}}||valign="top"| B.L. van der Waerden, "Algebra" , '''1–2''' , Springer  (1967–1971)  (Translated from German) {{MR|}} {{ZBL|}}
+
|valign="top"|{{Ref|Wae}}||valign="top"| B.L. van der Waerden, "Algebra" , '''1–2''' , Springer  (1967–1971)  (Translated from German)   {{MR|1541390}} {{ZBL|0192.33002}}  
 
|-
 
|-
|valign="top"|{{Ref|CuRe}}||valign="top"| C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962) {{MR|}} {{ZBL|}}
+
|valign="top"|{{Ref|CuRe}}||valign="top"| C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)   {{MR|0144979}} {{ZBL|0131.25601}}  
 
|-
 
|-
|valign="top"|{{Ref|AuGo}}||valign="top"| M. Auslander,  O. Goldman,  "The Brauer group of a commutative ring"  ''Trans. Amer. Math. Soc.'' , '''97'''  (1960)  pp. 367–409 {{MR|}} {{ZBL|}}
+
|valign="top"|{{Ref|AuGo}}||valign="top"| M. Auslander,  O. Goldman,  "The Brauer group of a commutative ring"  ''Trans. Amer. Math. Soc.'' , '''97'''  (1960)  pp. 367–409   {{MR|0121392}} {{ZBL|0100.26304}}  
 
|-
 
|-
|valign="top"|{{Ref|MeIn}}||valign="top"| F. de Meyer,  E. Ingraham,  "Separable algebras over commutative rings" , ''Lect. notes in math.'' , '''181''' , Springer  (1971) {{MR|}} {{ZBL|}}
+
|valign="top"|{{Ref|MeIn}}||valign="top"| F. de Meyer,  E. Ingraham,  "Separable algebras over commutative rings" , ''Lect. notes in math.'' , '''181''' , Springer  (1971) {{MR|0280479}} {{ZBL|0215.36602}}
 
|-
 
|-
|valign="top"|{{Ref|KnuOj}}||valign="top"| M.-A. Knus,  M. Ojanguren,  "Théorie de la descente et algèbres d'Azumaya" , ''Lect. notes in math.'' , '''389''' , Springer  (1974) {{MR|}} {{ZBL|}}
+
|valign="top"|{{Ref|KnuOj}}||valign="top"| M.-A. Knus,  M. Ojanguren,  "Théorie de la descente et algèbres d'Azumaya" , ''Lect. notes in math.'' , '''389''' , Springer  (1974)   {{MR|0417149}} {{ZBL|0284.13002}}  
 
|-
 
|-
|valign="top"|{{Ref|CaOy}}||valign="top"| S. Caenepeel,  F. van Oystaeyen,  "Brauer groups and the cohomology of graded rings" , M. Dekker  (1988) {{MR|}} {{ZBL|}}
+
|valign="top"|{{Ref|CaOy}}||valign="top"| S. Caenepeel,  F. van Oystaeyen,  "Brauer groups and the cohomology of graded rings" , M. Dekker  (1988)   {{MR|0972258}} {{ZBL|0702.13001}}  
 
|-
 
|-
 
|}
 
|}

Latest revision as of 21:57, 29 November 2014

2020 Mathematics Subject Classification: Primary: 16-XX [MSN][ZBL]

Separable algebra over a field

A finite-dimensional semi-simple associative algebra $A$ over a field $k$ that remains semi-simple under any extension $K$ of $k$ (that is, the algebra $K \otimes_k A$ is semi-simple for any field $K \supseteq k$, cf. Semi-simple algebra). An algebra $A$ is separable if and only if the centres of the simple components of this algebra (see Associative rings and algebras) are separable field extensions of $k$ (cf. Separable extension).

Separable algebra over a ring

An algebra $A$ over a commutative ring $R$ is separable if $A$ is projective as a left $A \otimes_R A^\textrm{o} = A^e$-module (cf. Projective module). Here, $A^\textrm{o}$ is the opposite algebra of $A$.

An algebra that is separable over its centre is called an Azumaya algebra. These algebras are important in the theory of the Brauer group of a commutative ring or scheme.

References

[Wae] B.L. van der Waerden, "Algebra" , 1–2 , Springer (1967–1971) (Translated from German) MR1541390 Zbl 0192.33002
[CuRe] C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) MR0144979 Zbl 0131.25601
[AuGo] M. Auslander, O. Goldman, "The Brauer group of a commutative ring" Trans. Amer. Math. Soc. , 97 (1960) pp. 367–409 MR0121392 Zbl 0100.26304
[MeIn] F. de Meyer, E. Ingraham, "Separable algebras over commutative rings" , Lect. notes in math. , 181 , Springer (1971) MR0280479 Zbl 0215.36602
[KnuOj] M.-A. Knus, M. Ojanguren, "Théorie de la descente et algèbres d'Azumaya" , Lect. notes in math. , 389 , Springer (1974) MR0417149 Zbl 0284.13002
[CaOy] S. Caenepeel, F. van Oystaeyen, "Brauer groups and the cohomology of graded rings" , M. Dekker (1988) MR0972258 Zbl 0702.13001
How to Cite This Entry:
Separable algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Separable_algebra&oldid=25495
This article was adapted from an original article by L.A. Bokut' (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article