|
|
Line 1: |
Line 1: |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312101.png" /> of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312102.png" /> into itself which is an endomorphism of the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312103.png" /> and satisfies the relation usually referred to as the [[Leibniz rule]]
| + | {{MSC|26A06|26B05}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312104.png" /></td> </tr></table>
| + | {{MSC|58A05}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312105.png" /> be a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312106.png" />-module. A derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312107.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312108.png" /> is a homomorphism of the respective additive groups which satisfies the condition
| + | {{MSC|12H05}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312109.png" /></td> </tr></table>
| + | ''product rule'' |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121010.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121011.png" />. For any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121012.png" /> from the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121014.png" />, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121016.png" /> is a derivation, is a derivation. The sum of two derivations is also a derivation. This defines the structure of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121017.png" />-module on the set of all derivations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121018.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121019.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121020.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121021.png" /> is a subring in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121022.png" />, a derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121024.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121025.png" /> is known as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121027.png" />-derivation. The set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121028.png" />-derivations forms a submodule in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121029.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121030.png" />. The operation | + | In calculus, the term refers to the elementary rule for the [[Derivative|derivative]] of the product of two functions. In its simplest form it states the following |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121031.png" /></td> </tr></table>
| + | '''Theorem 1''' |
| + | Let $I$ be an open interval and $x_0\in I$. Let $f,g : I \to \mathbb R$ be two functions which are [[Differentiable function|differentiable]] at $x_0$. Then $fg$ is also differentiable at $x_0$ and |
| + | \begin{equation}\label{e:rule} |
| + | (fg)' (x_0) = f(x_0) g'(x_0) + f' (x_0) g (x_0)\, . |
| + | \end{equation} |
| | | |
− | defines the structure of a Lie <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121032.png" />-algebra on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121033.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121034.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121035.png" /> is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121036.png" />-modules, then the composition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121037.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121038.png" />.
| + | ====Variants==== |
| + | The same rule applies also to several other situations. The following is a list of rather important cases. |
| + | * $x_0\in U$ open subset of $\mathbb R^n$ and the maps $f,g: U \to \mathbb R$ have both the [[Partial derivative|partial derivative]] $\frac{\partial}{\partial x_i}$ at $x_0$. The corresponding formula is then |
| + | \[ |
| + | \frac{\partial}{\partial x_i} (fg) (x_0) = g(x_0) \frac{\partial f}{\partial x_i} (x_0) + f(x_0) \frac{\partial g}{\partial x_i} (x_0)\, . |
| + | \] |
| + | * $x_0\in U$ open subset of $\mathbb R^n$, or more generally $x_0\in M$ for some [[Differentiable manifold|differentiable manifold]], and the maps $f,g U \to \mathbb R$ are differentiable along a [[Vector field on a manifold|vector field]]. The rule becomes then |
| + | \[ |
| + | [X (fg)]\, (x_0) = g (x_0)\, [X (f)]\, (x_0) + f(x_0)\, [X (g)]\, (x_0)\, . |
| + | \] |
| + | * $x_0\in U$ open subset of $\mathbb R^n$, or more generally $x_0\in M$ for some [[Differentiable manifold|differentiable manifold]], and the maps $f,g: U \to \mathbb R$ are differentiable. The formula is then |
| + | \[ |
| + | \left. d (fg) \right|_{x_0} = f(x_0)\, \left. dg\right|_{x_0} + g(x_0)\, \left. df\right|_{x_0}\, . |
| + | \] |
| + | * $z_0\in U$ open subset of $\mathbb C$ and $f,g: U \to \mathbb C$ are differentiable in the sense of complex analysis (cf. [[Analytic function]]). Then the formula reads as \eqref{e:rule}. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121039.png" /> be a ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121040.png" /> with coefficients in a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121041.png" />. The mapping
| + | ====Algebraic generalizations==== |
| + | The Leibniz rule is, together with the linearity, the key algebraic identity which unravels most of the structural properties of the differentiation. For this reason, in several situations people call ''derivations'' those operations over an appropriate set of functions which are linear and satisfy the Leibniz rule. Two important instances are: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121042.png" /></td> </tr></table>
| + | * [[Derivation in a ring]]. The primary example is the following: given a [[Differentiable manifold|differentiable manifold]] $M$, consider the [[Ring|ring]] $C^1 (M)$ of $C^1$ real-valued functions over $M$. A derivation at $x_0$ is a map $D: C^1 (M) \to \mathbb R$ which is linear, i.e. |
− | | + | \[ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121043.png" /></td> </tr></table>
| + | D (\lambda f + \mu g) = \lambda Df + \mu Dg \qquad \forall \lambda, \mu \in \mathbb R, \forall f,g\in C^1 (M)\, , |
− | | + | \] |
− | is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121044.png" />-derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121045.png" />, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121046.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121047.png" /> is a free module with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121048.png" />. | + | and satisfies the Leibniz rule, i.e. |
− | | + | \[ |
− | For any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121049.png" /> of an associative ring (or a Lie algebra) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121050.png" /> the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121051.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121052.png" />) is a derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121053.png" />, known as an inner derivation. Derivations which are not inner are known as outer.
| + | D (fg) = f(x_0) Dg + g (x_0) Df\, . |
− | | + | \] |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121054.png" /> is a subring of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121055.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121056.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121057.png" /> is an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121058.png" /> if the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121059.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121060.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121061.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121062.png" /> is a commutative integral ring and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121063.png" /> is its field of fractions, and also if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121064.png" /> is a separable algebraic extension of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121065.png" /> or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121066.png" /> is a Lie algebra over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121068.png" /> is its enveloping algebra, there exists a unique extension of any derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121069.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121070.png" />.
| + | Global derivatives are maps from $C^1 (M)$ to $C^0 (M)$ satisfying the (analog of) the same rules. Derivations give one way (among many equivalent others) to define the [[Tangent space|tangent space]] to differentiable manifolds and [[Vector field on a manifold|vector fields]] on them (together with the [[Lie bracket]]). |
− | | + | *[[Differential field]]. A field $\mathbb F$ with a map $':\mathbb F \to \mathbb F$ (called derivation) satisfying the rules |
− | There is a close connection between derivations and ring isomorphisms. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121071.png" /> is a nilpotent derivation, that is, for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121073.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121074.png" /> is an algebra over a field of characteristic zero, the mapping
| + | \[ |
− | | + | (f+g)' = f' + g' \qquad \mbox{and} \qquad (fg)' = fg' + gf'\, . |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121075.png" /></td> </tr></table>
| + | \] |
− | | + | Differential fields are the object of study of [[Differential algebra]]. Historically the birth of differential algebra can be dated back to the following famous theorem of Liouville ({{Cite|Li}}): the [[Primitive function|primitive]] of $e^{x^2}$ cannot be expressed in terms of [[Elementary functions|elementary functions]] (see {{Cite|Ro}} for a modern proof). |
− | is an automorphism of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121076.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121078.png" /> is a local commutative ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121079.png" />, there is a bijection between the set of derivations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121080.png" /> and the set of automorphisms of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121081.png" /> which induces the identity automorphism of the residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121082.png" />. Derivations of non-separable field extensions play the role of elements of the Galois group of separable extensions in the Galois theory of such extensions [[#References|[4]]].
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algebra" , ''Elements of mathematics'' , '''1''' , Addison-Wesley (1973) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Jacobson, "The theory of rings" , Amer. Math. Soc. (1943)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Mordeson, B. Vinograde, "Strucuture of arbitrary purely inseparable extension fields" , Springer (1970)</TD></TR></table>
| + | {| |
− | | + | |- |
− | | + | |valign="top"|{{Ref|Ca}}|| H. Cartan, "Elementary Theory of Analytic Functions of One or Several Complex Variable", Dover (1995). |
− | | + | |- |
− | ====Comments====
| + | |valign="top"|{{Ref|Li}}|| J. Liouville, "Mémoire sur les Trascendantes Elliptiques et sur l’impossibilité d’exprimer les racines de certaines équations en fonction finie explicite des coefficients", ''J. Math. Pures Appl.'' '''2''' (1837) pp. 124–193. |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121083.png" />-derivations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121084.png" /> are precisely the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121085.png" />-linear mappings from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121086.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121087.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121088.png" />-algebra, then a derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121089.png" /> is a [[Crossed homomorphism|crossed homomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121090.png" /> or, equivalently, a Hochschild <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121092.png" />-cocycle.
| + | |- |
− | | + | |valign="top"|{{Ref|Ma}}|| A. R. Magid, "Lectures on differential Galois theory", ''University Lecture Series, 7.'' American Mathematical Society, Providence, RI, (1994) |
− | If the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121093.png" /> is semi-simple, all derivations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121094.png" /> are inner, i.e. in that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121095.png" />.
| + | |- |
− | | + | |valign="top"|{{Ref|Ro}}|| M. Rosenlicht, "Integration in finite terms", ''Amer. Math. Monthly'' '''79''' (1972) pp. 963–972. |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121096.png" /> be any algebra (or ring), not necessarily commutative or associative. The algebra is said to be Lie admissible if the associated algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121097.png" /> with multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121098.png" /> is a Lie algebra. Associative algebras and Lie algebras are Lie admissible, but there are also other examples. These algebras were introduced by A.A. Albert in 1948.
| + | |- |
− | | + | |valign="top"|{{Ref|Ru}}|| W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) {{MR|0385023}} {{ZBL|0346.26002}} |
− | A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121099.png" /> together with a derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d031210100.png" /> is a [[Differential ring|differential ring]], cf. also [[Differential-algebra(2)|Differential algebra]] and [[Differential field|Differential field]].
| + | |- |
| + | |valign="top"|{{Ref|Sp}}|| M. Spivak, "Calculus on manifolds" , Benjamin (1965) |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 26A06 Secondary: 26B05 [MSN][ZBL]
2020 Mathematics Subject Classification: Primary: 58A05 [MSN][ZBL]
2020 Mathematics Subject Classification: Primary: 12H05 [MSN][ZBL]
product rule
In calculus, the term refers to the elementary rule for the derivative of the product of two functions. In its simplest form it states the following
Theorem 1
Let $I$ be an open interval and $x_0\in I$. Let $f,g : I \to \mathbb R$ be two functions which are differentiable at $x_0$. Then $fg$ is also differentiable at $x_0$ and
\begin{equation}\label{e:rule}
(fg)' (x_0) = f(x_0) g'(x_0) + f' (x_0) g (x_0)\, .
\end{equation}
Variants
The same rule applies also to several other situations. The following is a list of rather important cases.
- $x_0\in U$ open subset of $\mathbb R^n$ and the maps $f,g: U \to \mathbb R$ have both the partial derivative $\frac{\partial}{\partial x_i}$ at $x_0$. The corresponding formula is then
\[
\frac{\partial}{\partial x_i} (fg) (x_0) = g(x_0) \frac{\partial f}{\partial x_i} (x_0) + f(x_0) \frac{\partial g}{\partial x_i} (x_0)\, .
\]
- $x_0\in U$ open subset of $\mathbb R^n$, or more generally $x_0\in M$ for some differentiable manifold, and the maps $f,g U \to \mathbb R$ are differentiable along a vector field. The rule becomes then
\[
[X (fg)]\, (x_0) = g (x_0)\, [X (f)]\, (x_0) + f(x_0)\, [X (g)]\, (x_0)\, .
\]
- $x_0\in U$ open subset of $\mathbb R^n$, or more generally $x_0\in M$ for some differentiable manifold, and the maps $f,g: U \to \mathbb R$ are differentiable. The formula is then
\[
\left. d (fg) \right|_{x_0} = f(x_0)\, \left. dg\right|_{x_0} + g(x_0)\, \left. df\right|_{x_0}\, .
\]
- $z_0\in U$ open subset of $\mathbb C$ and $f,g: U \to \mathbb C$ are differentiable in the sense of complex analysis (cf. Analytic function). Then the formula reads as \eqref{e:rule}.
Algebraic generalizations
The Leibniz rule is, together with the linearity, the key algebraic identity which unravels most of the structural properties of the differentiation. For this reason, in several situations people call derivations those operations over an appropriate set of functions which are linear and satisfy the Leibniz rule. Two important instances are:
- Derivation in a ring. The primary example is the following: given a differentiable manifold $M$, consider the ring $C^1 (M)$ of $C^1$ real-valued functions over $M$. A derivation at $x_0$ is a map $D: C^1 (M) \to \mathbb R$ which is linear, i.e.
\[
D (\lambda f + \mu g) = \lambda Df + \mu Dg \qquad \forall \lambda, \mu \in \mathbb R, \forall f,g\in C^1 (M)\, ,
\]
and satisfies the Leibniz rule, i.e.
\[
D (fg) = f(x_0) Dg + g (x_0) Df\, .
\]
Global derivatives are maps from $C^1 (M)$ to $C^0 (M)$ satisfying the (analog of) the same rules. Derivations give one way (among many equivalent others) to define the tangent space to differentiable manifolds and vector fields on them (together with the Lie bracket).
- Differential field. A field $\mathbb F$ with a map $':\mathbb F \to \mathbb F$ (called derivation) satisfying the rules
\[
(f+g)' = f' + g' \qquad \mbox{and} \qquad (fg)' = fg' + gf'\, .
\]
Differential fields are the object of study of Differential algebra. Historically the birth of differential algebra can be dated back to the following famous theorem of Liouville ([Li]): the primitive of $e^{x^2}$ cannot be expressed in terms of elementary functions (see [Ro] for a modern proof).
References
[Ca] |
H. Cartan, "Elementary Theory of Analytic Functions of One or Several Complex Variable", Dover (1995).
|
[Li] |
J. Liouville, "Mémoire sur les Trascendantes Elliptiques et sur l’impossibilité d’exprimer les racines de certaines équations en fonction finie explicite des coefficients", J. Math. Pures Appl. 2 (1837) pp. 124–193.
|
[Ma] |
A. R. Magid, "Lectures on differential Galois theory", University Lecture Series, 7. American Mathematical Society, Providence, RI, (1994)
|
[Ro] |
M. Rosenlicht, "Integration in finite terms", Amer. Math. Monthly 79 (1972) pp. 963–972.
|
[Ru] |
W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) MR0385023 Zbl 0346.26002
|
[Sp] |
M. Spivak, "Calculus on manifolds" , Benjamin (1965)
|