Repeated limit
A limit of a function of several variables in which the passage to the limit is performed successively in the different variables. Let, for example, a function $ f $
of two variables $ x $
and $ y $
be defined on a set of the form $ X \times Y $,
$ x \in X \subset \mathbf R ^ {m} $,
$ y \in Y \subset \mathbf R ^ {n} $,
and let $ x _ {0} $
and $ y _ {0} $
be limit points of the sets $ X $
and $ Y $,
respectively, or the symbol $ \infty $(
if $ m = 1 $
or $ n = 1 $,
$ x _ {0} $
and, respectively, $ y _ {0} $
may be infinities with signs: $ + \infty $,
$ - \infty $).
If for any fixed $ y \in Y $
the limit
$$ \tag{1 } \phi ( y) = \lim\limits _ {x \rightarrow x _ {0} } f( x, y) $$
exists, and for $ \phi ( y) $ the limit
$$ \lim\limits _ {y \rightarrow y _ {0} } \phi ( y) $$
exists, then this limit is called the repeated limit
$$ \tag{2 } \lim\limits _ {y \rightarrow y _ {0} } \lim\limits _ {x \rightarrow x _ {0} } f( x, y) $$
of the function $ f $ at the point $ ( x _ {0} , y _ {0} ) $. Similarly one defines the repeated limit
$$ \tag{3 } \lim\limits _ {x \rightarrow x _ {0} } \lim\limits _ {y \rightarrow y _ {0} } f( x, y). $$
If the (finite or infinite) double limit
$$ \tag{4 } \lim\limits _ {( x, y) \rightarrow ( x _ {0} , y _ {0} ) } f( x, y) $$
exists, and if for any fixed $ y \in Y $ the finite limit (1) exists, then the repeated limit (2) also exists, and it is equal to the double limit (4).
If for each $ y \in Y $ the finite limit (1) exists, for each $ x \in X $ the finite limit
$$ \psi ( x) = \lim\limits _ {y \rightarrow y _ {0} } f( x, y) $$
exists, and for $ x \rightarrow x _ {0} $ the function $ f( x, y) $ tends to a limit function $ \phi ( y) $ uniformly in $ y \in Y $, then both the repeated limits (2) and (3) exist and are equal to one another.
If the sets $ X $ and $ Y $ are sets of integers, then the function $ f $ is called a double sequence, and the values of the argument are written as subscripts:
$$ f( m, n) = u _ {mn} , $$
and the repeated limits
$$ \lim\limits _ {n \rightarrow \infty } \lim\limits _ {m \rightarrow \infty } u _ {mn} \ \textrm{ and } \ \lim\limits _ {m \rightarrow \infty } \lim\limits _ {n \rightarrow \infty } u _ {mn} $$
are called the repeated limits of the double sequence.
The concept of a repeated limit has been generalized to the case where $ X $ and $ Y $ and the set of values of the function $ f $ are subsets of certain topological spaces.
Repeated limit. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Repeated_limit&oldid=48513