Quasi-invariant measure
A measure on a space that is equivalent to itself under  "translations"  of this space. More precisely: Let  $  ( X , B ) $
be a measurable space (that is, a set  $  X $
with a distinguished  $  \sigma $-algebra  $  B $
of subsets of it) and let  $  G $
be a group of automorphisms of it (that is, one-to-one transformations  $  g :  X \rightarrow X $
that are measurable together with their inverses  $  g  ^ {-1} $
with respect to the  $  \sigma $-algebra  $  B $). 
A measure  $  \mu $
on  $  ( X , B ) $
is said to be quasi-invariant (with respect to  $  G $) 
if for any  $  g \in G $
the transformed measure  $  g \mu ( A) = \mu ( g  ^ {-1} A ) $, 
$  A \in B $, 
is equivalent to the measure  $  \mu $
(that is, these measures are absolutely continuous with respect to each other, cf. Absolute continuity). If  $  X $
is a topological homogeneous space with a continuous locally compact group of automorphisms  $  G $
(that is,  $  G $
acts transitively on  $  X $
and is endowed with a topology such that the mapping  $  G \times X \rightarrow X $, 
$  ( g , x ) \rightarrow g x $, 
is continuous with respect to the product topology on  $  G \times X $) 
and  $  B $
is the Borel  $  \sigma $-algebra with respect to the topology on  $  X $, 
then there exists a quasi-invariant measure that is unique up to equivalence [1]. In particular, a measure on  $\mathbf R  ^ {n} $
is quasi-invariant with respect to all shifts  $  x \rightarrow x + a $, 
$  x , a \in \mathbf R  ^ {n} $, 
if and only if it is equivalent to Lebesgue measure. If the group of transformations is not locally compact, there need not be a quasi-invariant measure; this is the case, for example, in a wide class of infinite-dimensional topological vector spaces [2].
References
| [1] | N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) | 
| [2] | I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , 4 , Acad. Press (1964) (Translated from Russian) | 
Comments
Thus, a quasi-invariant measure is a generalization of a Haar measure on a topological group. On a locally compact group with left Haar measure $ \mu $ a measure is left quasi-invariant (quasi-invariant under left translations) if and only if it is equivalent to $ \mu $.
There exists no quasi-invariant measure on an infinite-dimensional Hilbert space with respect to the group of all translations (and so, in particular, no Haar measure). Let $ \Phi \subset H \subset \Phi ^ \prime $ be a rigged Hilbert space, with $ \Phi $ a nuclear space with inner product $ ( , ) $, $ H $ the completion of $ \Phi $, and $ \Phi ^ \prime $ the dual of $ \Phi $. Each $ f \in \Phi $ defines an element $ F _ {f} $ in $ \Phi ^ \prime $, the functional $ F _ {f} ( g) = \langle f , g\rangle $. A measure $ \mu $ on $ \Phi ^ \prime $ is quasi-invariant if $ \mu ( F _ {f} + X) = 0 $ for all $ f \in \Phi $ and $ X \subset \Phi ^ \prime $ with $ \mu ( X) = 0 $, i.e. if it is quasi-invariant with respect to the group of translations $ \{ {F _ {f} } : {f \in \Phi } \} $. There exist quasi-invariant measures on such dual spaces of nuclear spaces, [2], Chapt. IV, §5.2.
Quasi-invariant measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-invariant_measure&oldid=51697