Place of a field
$ K $
with values in a field $ L $,
$ L $-
valued place of a field $ K $
A mapping $ f: K \rightarrow L \cup \{ \infty \} $ satisfying the conditions
$$ f ( 1) = 1, $$
$$ f ( a + b) = f ( a) + f ( b), $$
$$ f ( ab) = f ( a) \cdot f ( b) $$
(provided that the expressions on the right-hand sides are defined). The following conventions are made:
$$ \infty \cdot \infty = \infty , $$
$$ c + \infty = \infty + c = \infty ,\ c \in L, $$
$$ c \cdot \infty = \infty \cdot c = \infty ,\ c \in L,\ c \neq 0, $$
while the expressions $ \infty + \infty $, $ 0 \cdot \infty $ and $ \infty \cdot 0 $ are undefined.
An element $ a $ in $ K $ for which $ f ( a) \in L $ is called finite in the place $ f $; the set $ A $ of finite elements is a subring of $ K $, and the mapping $ f: A \rightarrow L $ is a ring homomorphism. The ring $ A $ is a local ring, its maximal ideal is $ \mathfrak m = \{ {a \in K } : {f ( a) = 0 } \} $.
A place $ f $ determines a valuation $ v $ of $ K $ with group of values $ K ^ {*} /A ^ {*} $( where $ K ^ {*} = K \setminus \{ 0 \} $ and $ A ^ {*} = A \setminus \mathfrak m $ are, respectively, the groups of invertible elements of $ K $ and $ A $). The ring of this valuation is the same as $ A $. Conversely, any valuation $ v $ of a field $ K $ determines a place of $ K $ with values in the residue class field of $ v $. Here, the ring of finite elements is the same as the ring of (integers of) the valuation $ v $.
References
[1] | S. Lang, "Algebra" , Addison-Wesley (1984) |
Comments
References
[a1] | P.M. Cohn, "Algebra" , 2 , Wiley (1977) pp. Chapt. 9 |
Place of a field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Place_of_a_field&oldid=48183