Monomial substitutions, group of
The subgroup of the group $ \mathop{\rm GL} ( m , \mathbf Z [ H ] ) $
of all invertible matrices of order $ m $
over the integral group ring $ \mathbf Z [ H ] $(
see Group algebra) of a group $ H $,
consisting of all matrices which precisely contain one non-zero element of $ H $
in each row and column. Each such matrix, having a non-zero element $ h _ {ij} \in H $
in place $ ( i , j ) $,
corresponds to a monomial substitution, that is, a mapping $ \psi : u _ {i} \rightarrow h _ {ij} u _ {j} $,
where $ j = j ( i ) $,
$ i = 1 \dots m $,
and $ u _ {i} \rightarrow u _ {j} $
is a permutation of the finite set $ S = \{ u _ {1} \dots u _ {m} \} $.
The product of such mappings is given by the formula
$$ \psi _ {1} \psi _ {2} : \ u _ {i} \rightarrow ( h _ {ij} h _ {ik} ) u _ {k} $$
( $ \psi _ {1} : u _ {i} \rightarrow h _ {ij} u _ {j} $, $ \psi _ {2} : u _ {j} \rightarrow h _ {ik} u _ {k} $), and corresponds to the product of the matrices associated with $ \psi _ {1} $ and $ \psi _ {2} $. Any group $ G $ containing $ H $ as a subgroup of index $ m $ can be isomorphically imbedded in a group of monomial substitutions. The group of monomial substitutions is isomorphic to the (unrestricted) wreath product of $ H $ with the symmetric group $ S ( m ) $ of degree $ m $.
References
[1] | M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian) |
[3] | M. Hall jr., "The theory of groups" , Macmillan (1959) |
Monomial substitutions, group of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monomial_substitutions,_group_of&oldid=47892