Mapping-cone construction
The construction that associates with every continuous mapping $ f : X \rightarrow Y $
of topological spaces the topological space $ C _ {f} \supset Y $
obtained from the topological sum (disjoint union) $ C X \oplus Y $(
here $ C X = ( X \times [ 0 , 1 ] ) / ( X \times \{ 0 \} ) $
is the cone over $ X $)
by identifying $ x \times \{ 1 \} = f ( x) $,
$ x \in X $.
The space $ C _ {f} $
is called the mapping cone of $ f $.
If $ X $
and $ Y $
are pointed spaces with distinguished points $ x \in X $,
$ y \in Y $,
then the generator $ x \times [ 0 , 1 ] $
of $ C X $
is contracted to a point, and $ C _ {f} $
is said to be the collapsed mapping cone of $ f $.
For an arbitrary pointed topological space $ K $,
the sequence $ X \rightarrow ^ {f} Y \subset C _ {f} $
induces an exact sequence
$$ [ X , K ] \leftarrow [ Y , K ] \leftarrow [ C _ {f} , K ] $$
of pointed sets. The mapping $ f $ is homotopic to the constant mapping to the distinguished point if and only if $ Y $ is a retract of $ C _ {f} $( cf. Retract of a topological space).
References
[1] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
[2] | M.K. Tangora, "Cohomology operations and their applications in homotopy theory" , Harper & Row (1968) |
Comments
The algebraic analogue of the mapping-cone construction is as follows.
Let $ u: K _ {\bullet } \rightarrow L _ {\bullet } $ be a morphism of complexes, i.e. $ u = ( u _ {n} ) _ {n \in \mathbf Z } $ and $ u _ {n-1} \partial _ {n} = \partial _ {n} u _ {n} $, where $ \partial _ {n} ^ {K} : K _ {n} \rightarrow K _ {n-1} $. The mapping cone of $ u $ is the complex $ C( u) _ {\bullet } $ defined by
$$ C( u) _ {n} = K _ {n-1} \oplus L _ {n} ,\ \ \partial ( k, l) = ( - \partial k , \partial l + uk ). $$
The injections $ L _ {n} \rightarrow C( u) _ {n} $ define a morphism of complexes and if $ K [ - 1 ] $ denotes the complex with $ K [ - 1 ] _ {n} = K _ {n-1} $ and $ \partial _ {n} ^ {K[ - 1 ] } = - \partial _ {n-1} ^ {K} $, then the projections $ C( u) _ {n} \rightarrow K _ {n-1} $ yield
$$ 0 \rightarrow L _ {n} \rightarrow C( u) _ {n} \rightarrow K[ - 1] _ {n} \rightarrow 0, $$
which fit together to define a short exact sequence of complexes
$$ 0 \rightarrow L _ {\bullet } \rightarrow ^ { i } C( u) _ {\bullet } \rightarrow ^ { p } K[ - 1] _ {\bullet } \rightarrow 0, $$
and there results a long exact homology sequence
$$ \dots \rightarrow \ H _ {n} ( L _ { \bullet } ) \rightarrow ^ { {i _ * } } \ H _ {n} ( C( u) _ { \bullet } ) \rightarrow ^ { {p _ * } } \ H _ {n-1} ( K _ { \bullet } ) \rightarrow ^ { {u _ * } } \ H _ {n-1} ( L _ {\bullet } ) \rightarrow \dots . $$
By turning a complex $ K _ {\bullet } $ into a "co-complex" $ K ^ { \bullet } $, $ K ^ {n} = K _ {-n} $, the analogous constructions and results in a cohomological setting are obtained.
The complex $ K [ - 1] _ {\bullet } $ is called the suspension of the complex $ K _ {\bullet } $.
References
[a1] | S. MacLane, "Homology" , Springer (1963) pp. Sect. II.4 |
Mapping-cone construction. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mapping-cone_construction&oldid=51293