Lie ternary system
A vector space
with a trilinear composition
\mathfrak m \times \mathfrak m \times \mathfrak m \rightarrow \mathfrak m ,\ \ ( X , Y , Z ) \rightarrow [ X , Y , Z ] ,
satisfying the following conditions:
[ X , X , Y ] = 0 ,
[ X , Y , Z ] + [ Y , Z , X ] + [ Z , X , Y ] = 0 ,
[ X , Y , [ Z , U , V ] ] =
= \ [ [ X , Y , Z ] , U , V ] + [ Z , [ X , Y , U ] , V ] + [ Z , U , [ X , Y , V ] ] .
If \mathfrak g is a Lie algebra and \mathfrak m \subset \mathfrak g is a subspace such that [ [ X , Y ] , Z ] \in \mathfrak m for any X , Y , Z \in \mathfrak m , then the operation
[ X , Y , Z ] = [ [ X , Y ] , Z ]
converts \mathfrak m into a Lie ternary system. Conversely, every Lie ternary system can be obtained in this way from some Lie algebra.
The category of finite-dimensional Lie ternary systems over the field \mathbf R is equivalent to the category of simply-connected symmetric homogeneous spaces (see Symmetric space).
References
[1] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |
[2] | O. Loos, "Symmetric spaces" , 1 , Benjamin (1969) |
Lie ternary system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_ternary_system&oldid=47633