# Lebesgue criterion

for the convergence of Fourier series

2010 Mathematics Subject Classification: Primary: 42A20 [MSN][ZBL]

A criterion first proved by Lebesgue for the convergence of Fourier series in [Le].

Theorem Consider a summable $2\pi$-periodic function $f: \mathbb R \to \mathbb R$, a point $x\in \mathbb R$ and the function $\varphi (u):= f(x+u)+f(x-u) - 2 f(x)\, .$ If there is $\delta>0$ such that $\lim_{h\downarrow 0} \int_h^\delta \left|\frac{\varphi (u+h)}{u+h} - \frac{\varphi (u)}{u}\right|\, du \;=\; 0\, ,$ then the Fourier series of $f$ converges to $f(x)$ at $x$.

Cp. with Section 6 of Chapter III in volume 1 of [Ba] and Section 11 of Chapter II in volume 1 of [Zy]. The Lebesgue criterion is stronger then the Dirichlet criterion, the Jordan criterion, the Dini criterion, the de la Vallée-Poussin criterion, and the Young criterion. Cp. with Section 7 of Chapter III in volume 1 of [Ba].

How to Cite This Entry:
Lebesgue criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_criterion&oldid=29191
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article