Laplace method
of asymptotic estimation
A method for determining the asymptotic behaviour as $ 0 < \lambda \rightarrow + \infty $ of Laplace integrals
$$ \tag{1 } F ( \lambda ) = \int\limits _ \Omega f ( x) e ^ {\lambda S ( x) } d x , $$
where $ \Omega = [ a , b ] $ is a finite interval, $ S $ is a real-valued function and $ f $ is a complex-valued function, both sufficiently smooth for $ x \in \Omega $. The asymptotic behaviour of $ F ( \lambda ) $ is the sum of the contributions from points at which $ \max _ {x \in \Omega } S ( x) $ is attained, if the number of these points is assumed to be finite.
1) If a maximum is attained at $ x = a $ and if $ S ^ { \prime } ( a) \neq 0 $, then the contribution $ V _ {a} ( \lambda ) $ from the point $ a $ in the asymptotic behaviour of the integral (1) is equal to
$$ V _ {a} ( \lambda ) = - \frac{f ( a) + O ( \lambda ^ {-} 1 ) }{\lambda S ^ { \prime } ( a) } e ^ {\lambda S ( a) } . $$
2) If a maximum is attained at an interior point $ x ^ {0} $ of the interval $ \Omega $ and $ S ^ { \prime\prime } ( x ^ {0} ) \neq 0 $, then its contribution equals
$$ V _ {x ^ {0} } ( \lambda ) = \ \sqrt {- \frac{2 \pi }{\lambda S ^ { \prime\prime } ( x ^ {0} ) } } [ f ( x ^ {0} ) + O ( \lambda ^ {-} 1 ) ] e ^ {\lambda S ( x ^ {0} ) } . $$
This formula was obtained by P.S. Laplace [1]. The case when $ f ( x) $ and $ S ^ { \prime } ( x) $ have zeros of finite multiplicity at maximum points of $ S $ has been completely investigated, and asymptotic expansions have been obtained (see [2]–[8]). The Laplace method can also be extended to the case of a contour $ \Omega $ in the complex plane (see Saddle point method).
Let $ \Omega $ be a bounded domain in $ \mathbf R _ {x} ^ {n} $ and suppose that the maximal $ m $ of $ S ( x) $ in the closure of $ \Omega $ is attained only at an interior point $ x ^ {0} $, where $ x ^ {0} $ is a non-degenerate stationary point of $ S $. Then
$$ F ( \lambda ) = \left ( \frac{2 \pi } \lambda \right ) ^ {n/2} | \mathop{\rm det} S _ {xx} ^ { \prime\prime } ( x ^ {0} ) | ^ {-} 1/2 [ f ( x ^ {0} ) + O ( \lambda ^ {-} 1 ) ] e ^ {\lambda S ( x ^ {0} ) } . $$
In this case, asymptotic expansions for $ F ( \lambda ) $ have also been obtained. All the formulas given above hold for complex $ \lambda $, $ | \lambda | \rightarrow \infty $, $ | \mathop{\rm arg} \lambda | \leq \pi / 2 - \epsilon $. There are also modifications of the Laplace method for the case when the dependence on the parameter is more complicated (see [4], [8]):
$$ F ( \lambda ) = \int\limits _ {\Omega ( \lambda ) } f ( x , \lambda ) e ^ {S ( x , \lambda ) } d x . $$
References
[1] | P.S. Laplace, "Essai philosophique sur les probabilités" , Oeuvres complètes , 7 , Gauthier-Villars (1886) |
[2] | A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) |
[3] | N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981) |
[4] | M.A. Evgrafov, "Asymptotic estimates and entire functions" , Gordon & Breach (1961) (Translated from Russian) |
[5] | E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965) |
[6] | F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) |
[7] | E. Riekstyn'sh, "Asymptotic expansions of integrals" , 1 , Riga (1974) (In Russian) |
[8] | M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian) |
Comments
References
[a1] | N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Holt, Rinehart & Winston (1975) pp. Chapt. 5 |
Laplace method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laplace_method&oldid=47580