Kellogg theorem
Let
be a function realizing a univalent conformal mapping of the disc \{ {z \in \mathbf C } : {| z | < 1 } \}
onto a domain D
bounded by a smooth closed Jordan curve S
for which the angle of inclination \theta ( l)
of the tangent to the real axis, as a function of the arc length l
of S ,
satisfies a Hölder condition:
| \theta ( l _ {1} ) - \theta ( l _ {2} ) | \leq \ K | l _ {1} - l _ {2} | ^ \alpha ,\ \ 0 < \alpha < 1 .
Then the derivative f ^ { \prime } ( z) is continuous in the closed disc | z | \leq 1 , and on the circle | z | = 1 the following Hölder conditions hold, with the same exponent \alpha :
| f ^ { \prime } ( e ^ {i \theta _ {1} } ) - f ^ { \prime } ( e ^ {i \theta _ {2} } ) | \leq K _ {1} | \theta _ {1} - \theta _ {2} | ^ \alpha ,
| \mathop{\rm ln} f ^ { \prime } ( e ^ {i \theta _ {1} } ) - \mathop{\rm ln} f ^ { \prime } ( e ^ {i \theta _ {2} } ) | \leq K _ {2} | \theta _ {1} - \theta _ {2} | ^ \alpha .
Kellogg's theorem is a direct corollary of more general results by O.D. Kellogg (see [1], [2]) on the boundary behaviour of the partial derivatives of orders r \leq 1 of a harmonic function u that is a solution of the Dirichlet problem for a domain D in Euclidean space \mathbf R ^ {n} , n \geq 2 , bounded by a sufficiently-smooth Lyapunov surface S (for n \geq 3 ) or a Lyapunov curve S (for n = 2 ; see Lyapunov surfaces and curves), where the given function f is also assumed to be sufficiently smooth on the boundary S .
Other results on the boundary behaviour of the derivative of the mapping function can be found in [3], [4].
References
[1] | O.D. Kellogg, "Harmonic functions and Green's integral" Trans. Amer. Math. Soc. , 13 : 1 (1912) pp. 109–132 |
[2] | O.D. Kellogg, "On the derivatives of harmonic functions on the boundary" Trans. Amer. Math. Soc. , 33 : 2 (1931) pp. 486–510 |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[4] | S.E. Warschawski, "On differentiability at the boundary in conformal mapping" Proc. Amer. Math. Soc. , 12 (1961) pp. 614–620 |
Comments
See also Conformal mapping, boundary properties of a.
See [a1], p.15, for a similar problem.
References
[a1] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) |
Kellogg theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kellogg_theorem&oldid=52211