Namespaces
Variants
Actions

Gaussian channel

From Encyclopedia of Mathematics
Jump to: navigation, search


A communication channel whose transition function determines a conditional Gaussian distribution. More precisely, a communication channel is called a Gaussian channel on the finite interval [ 0 , T ] if the following conditions hold: 1) the spaces of values of the input and output signals, ( {\mathcal Y} , {\mathcal S} _ {\mathcal Y} ) and ( \widetilde {\mathcal Y} , {\mathcal S} _ {\widetilde {\mathcal Y} } ) , are spaces of real-valued functions y ( t) and \widetilde{y} ( t) , t \in [ 0 , T ] , with the usual \sigma - algebras of measurable sets (that is, the input and output signals of a Gaussian channel are given by stochastic processes \eta = \{ {\eta ( t) } : {t \in [ 0 , T ] } \} and \widetilde \eta = \{ {\widetilde \eta ( t) } : {t \in [ 0 , T ] } \} , respectively); 2) for any fixed y \in Y the transition function Q ( y , \cdot ) of the channel determines a conditional Gaussian distribution (one says that a collection of random variables has a conditional Gaussian distribution if every finite subfamily has a conditional finite-dimensional normal distribution with second moments that are independent of the conditioning); and 3) the restriction V is imposed only on the second moment of the random variable \eta .

An example of a Gaussian channel on ( - \infty , \infty ) is a channel whose input signal is given by a stationary random sequence \eta = (\dots, \eta _ {-1} , \eta _ {0} , \eta _ {1} ,\dots ) and whose output signal is the stationary random sequence \widetilde \eta = ( \dots, \widetilde \eta _ {-1} , \widetilde \eta _ {0} , \widetilde \eta _ {1} ,\dots ) , obtained according to the formulas

\widetilde \eta _ {i} = \ \sum _ {k = - \infty } ^ \infty a _ {k} \eta _ {i-k} + \zeta _ {i} ,\ \ i = 0 , \pm 1 , \pm 2 \dots

where \zeta = ( \dots, \zeta _ {-1} , \zeta _ {0} , \zeta _ {1} ,\dots ) is a stationary Gaussian random sequence independent of \eta with {\mathsf E} \zeta _ {i} = 0 , i = \pm 1 , \pm 2 \dots and with spectral density f _ \zeta ( \lambda ) , - 1 / 2 \leq \lambda \leq 1 / 2 . The restriction on the input signal has the form

\int\limits _ {- 1 / 2 } ^ { {1 } / 2 } | \Phi ( \lambda ) | ^ {2} f _ \eta ( \lambda ) d \lambda \leq S ,

where f _ \eta ( \lambda ) is the spectral density of \eta , \phi ( \lambda ) is some function and S is a constant. The capacity of such a channel is given by the formula

C = \frac{1}{2} \int\limits _ {- 1 / 2 } ^ { {1 } / 2 } { \mathop{\rm log} \max } \ \left [ \left | \frac{a ( \lambda ) }{\Phi ( \lambda ) } \right | ^ {2} \cdot \frac \mu {f _ \zeta ( \lambda ) } , 1 \right ] \ d \lambda = S ,

where a ( \lambda ) = \sum _ {k = - \infty } ^ \infty e ^ {- 2 \pi i k \lambda } and \mu is determined by the equation

\int\limits _ {-1/2} ^ { 1/2 } \max \left [ \mu - \left | \frac{\Phi ( \lambda ) }{a ( \lambda ) } \ \right | ^ {2} f _ \zeta ( \lambda ) , 0 \right ] d \lambda = S .

See also [1], ,

cited in Communication channel.

References

[1] J.M. Wozencraft, I.M. Jacobs, "Principles of communication engineering" , Wiley (1965)
How to Cite This Entry:
Gaussian channel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gaussian_channel&oldid=55158
This article was adapted from an original article by R.L. DobrushinV.V. Prelov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article