Namespaces
Variants
Actions

Formal product of trigonometric series

From Encyclopedia of Mathematics
Jump to: navigation, search


$$ \sum _ {n = - \infty } ^ \infty c _ {n} e ^ {inx} \ \ \textrm{ and } \ \ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$

The series

$$ \sum _ {n = - \infty } ^ \infty K _ {n} e ^ {inx} , $$

where

$$ K _ {n} = \ \sum _ {m = - \infty } ^ \infty c _ {m} \gamma _ {n - m } . $$

If $ c _ {n} \rightarrow 0 $ as $ | n | \rightarrow \infty $, $ \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty $, and if

$$ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$

has sum $ \lambda ( x) $, then the series

$$ \sum _ {n = - \infty } ^ \infty ( K _ {n} - \lambda ( x) c _ {n} ) e ^ {inx} $$

has sum zero uniformly on $ [- \pi , \pi ] $. The condition

$$ \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty $$

is satisfied if, for example,

$$ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$

is the Fourier series of a three-times differentiable function $ \lambda ( x) $.

References

[1] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
[2] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)
How to Cite This Entry:
Formal product of trigonometric series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Formal_product_of_trigonometric_series&oldid=46956
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article