Divergent integral
A concept opposite to that of a convergent integral (see also Singular integral). For example, if a function $ f $
is defined on a bounded or unbounded interval $ [ a, b) $,
$ - \infty \leq a \leq b \leq \infty $,
if for each $ \eta \in [ a, b) $
it is integrable on $ [ a, \eta ] $
and if there is no finite limit
$$ \lim\limits _ {\eta \rightarrow b } \ \int\limits _ { a } ^ \eta f ( x) dx, $$
then one says that the integral $ \int _ {a} ^ {b} f ( x) dx $ diverges. In the case that
$$ \lim\limits _ {\eta \rightarrow b } \ \int\limits _ { a } ^ \eta f ( x) dx = \ + \infty \ \textrm{ or } \ \ - \infty , $$
one says that the divergent integral $ \int _ {a} ^ {b} f ( x) dx $ is equal to $ + \infty $ or $ - \infty $, respectively.
Divergent integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Divergent_integral&oldid=46756