Differential comitant
A differentiable mapping $ \phi $
of a tensor bundle $ T $
on a manifold $ M $
into a tensor bundle $ T ^ { \prime } $
on the same manifold such that if $ p : T \rightarrow M $
and $ p ^ \prime : T ^ { \prime } \rightarrow M $
are the projections of $ T $
and $ T ^ { \prime } $
on $ M $,
then
$$ p ^ \prime \phi = p . $$
The components of the tensor $ T ^ { \prime } = \phi ( T) $ in a local chart $ \xi $ on $ M $ depend on $ \xi $ only by means of the components of the tensor $ T $.
In particular, when $ T ^ { \prime } $ is reduced to the bundle of relative scalars of weight $ g $, the differential comitant is a differential invariant of weight $ g $.
Comments
Thus, a differential comitant is simply a vector bundle mapping from the tensor bundle $ T $ to the tensor bundle $ T ^ { \prime } $.
The bundle of relative scalars of weight $ g $ is constructed as follows. It is a line bundle. Let $ ( U _ \alpha ) _ \alpha $ be an atlas for the manifold $ M $ with coordinate change diffeomorphisms $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $. Take the trivial line bundles $ U _ \alpha \times \mathbf R $ over each $ U _ \alpha $ and glue them together by means of the diffeomorphisms $ \widetilde \phi _ {\alpha \beta } : U _ {\alpha \beta } \times \mathbf R \rightarrow U _ {\beta \alpha } \times \mathbf R $, $ ( x , t ) \mapsto ( \phi _ {\alpha \beta } ( x ) , ( \mathop{\rm det} ( J ( \phi _ {\alpha \beta } ) ( x) )) ^ {g} t ) $, where $ J ( \phi _ {\alpha \beta } ) ( x) : T _ {x} U _ {\alpha \beta } \rightarrow T _ {\phi _ {\alpha \beta } ( x) } U _ {\beta \alpha } $ is the Jacobian matrix of $ \phi _ {\alpha \beta } $ at $ x $.
Cf. also Differential invariant. Note however that for differential invariants not only tensor bundles but also (tensor and exterior products of) higher jet bundles and their duals are considered.
Differential comitant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differential_comitant&oldid=46664