Conditionally-periodic function
A function
which is the composition of a 2 \pi -
periodic function A: T ^ { n } \rightarrow \mathbf C ,
where T ^ { n }
is the n -
dimensional torus, and a function \phi : \mathbf R \rightarrow \mathbf R ^ {n}
such that \dot \phi = \omega ,
where \omega = ( \omega _ {1} \dots \omega _ {n} )
is a constant vector whose components are linearly independent over the rational numbers. Examples of conditionally-periodic functions are given by partial sums of Fourier series
\sum _ {i = 1 } ^ { n } [ A _ {i} \sin ( \omega _ {i} t + \psi _ {i} ) + B _ {i} \cos ( \omega _ {i} t + \psi _ {i} )],
where
A = A ( \phi _ {1} \dots \phi _ {n} ) = \ \sum _ {i = 1 } ^ { n } [ A _ {i} \sin \phi _ {i} + B _ {i} \cos \phi _ {i} ],
\phi = ( \phi _ {1} ( t) \dots \phi _ {n} ( t)) = ( \omega _ {1} t + \psi _ {1} \dots \omega _ {n} t + \psi _ {n} ).
If a conditionally-periodic function is continuous, then it coincides with a quasi-periodic function with periods \omega _ {1} \dots \omega _ {n} .
References
[1] | V.I. Arnol'd, "Chapitres supplémentaires de la théorie des équations différentielles ordinaires" , MIR (1980) (Translated from Russian) |
Comments
A conditionally-periodic function is almost periodic, cf. Almost-periodic function.
Conditionally-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conditionally-periodic_function&oldid=46445