# Clifford wavelets

A pair of families of Clifford algebra-valued functions satisfying appropriate smoothness, size, cancellation, and orthogonality conditions (cf. also Clifford algebra).

Specifically, denote these two families by $\{ \Theta ^ {\textrm{ l } } _ {Q,j } \} _ {Q,j }$ and $\{ \Theta ^ {\textrm{ r } } _ {Q,j } \} _ {Q,j }$, where $Q$ varies in the set of all dyadic cubes in $\mathbf R ^ {m}$ and $j = 1 \dots 2 ^ {m} - 1$( the latter indicates that there correspond $2 ^ {m} - 1$ wavelets, left- and right-handed, respectively, to each fixed dyadic cube $Q$; cf. also Wavelet analysis). In the simplest case (that of piecewise-constant, or Haar–Clifford, wavelets) they satisfy the following conditions:

1) $\supp \Theta ^ {\textrm{ l } } _ {Q,j }$, $\supp \Theta ^ {\textrm{ r } } _ {Q,j } \subseteq Q$;

2) $| {\Theta ^ {\textrm{ l } } _ {Q,j } } |$, $| {\Theta ^ {\textrm{ r } } _ {Q,j } } | \leq C | Q | ^ {- {1 / 2 } }$;

3) $\langle {\Theta ^ {\textrm{ l } } _ {Q,j } ,1 } \rangle _ {b} = 0$ and $\langle {1, \Theta ^ {\textrm{ r } } _ {Q,j } } \rangle _ {b} = 0$;

4) $\langle {\Theta ^ {\textrm{ l } } _ {Q,j } , \Theta ^ {\textrm{ r } } _ {Q ^ \prime ,j ^ \prime } } \rangle _ {b} = \delta _ {QQ ^ \prime } \delta _ {ij } e _ {0}$.

Here $b$ is a fixed (typically accretive) Clifford-algebra-valued function in $\mathbf R ^ {m}$ and the pairing $\langle {\cdot, \cdot } \rangle _ {b}$ is defined as

$$\left \langle {f _ {1} ,f _ {2} } \right \rangle _ {b} = \int\limits _ {\mathbf R ^ {m} } {f _ {1} ( x ) b ( x ) f _ {2} ( x ) } {dx } .$$

Due to the fact that the Clifford algebra-valued measure $b ( x ) dx$ in $\mathbf R ^ {m}$ no longer enjoys the usual translation and dilation properties of the Lebesgue measure, one cannot obtain families of functions as such via the familiar translation and dilation operations performed on some initial, fixed, function $\Theta$ as in the case of ordinary wavelets. However, as the above conditions suggest, everything happens as if one could.

For many applications it is crucial that such families are $L _ {2}$- frames, i.e. that

$$f = \sum \Theta ^ {\textrm{ r } } _ {Q,j } \left \langle {\Theta ^ {\textrm{ l } } _ {Q,j } ,f } \right \rangle _ {b} = \sum \left \langle {f, \Theta ^ {\textrm{ r } } _ {Q,j } } \right \rangle _ {b} \Theta ^ {\textrm{ l } } _ {Q,j } ,$$

$$\left \| f \right \| ^ {2} _ {L ^ {2} ( \mathbf R ^ {m} ) } \approx \sum \left | {\left \langle {\Theta ^ {\textrm{ l } } _ {Q,j } ,f } \right \rangle _ {b} } \right | ^ {2} \approx \sum \left | {\left \langle {f, \Theta ^ {\textrm{ r } } _ {Q,j } } \right \rangle _ {b} } \right | ^ {2}$$

for any square-integrable Clifford-algebra-valued function $f$ in $\mathbf R ^ {m}$.

How to Cite This Entry:
Clifford wavelets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Clifford_wavelets&oldid=46361
This article was adapted from an original article by M. Mitrea (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article