Bessel potential
A potential of the form
$$ P _ \alpha (x) = \ \int\limits _ {\mathbf R ^ {n} } G _ \alpha (x - y) \ d \mu (y),\ \ a > 0, $$
where $ x = (x _ {1} \dots x _ {n} ) $, $ y = (y _ {1} \dots y _ {n} ) $ are points in the Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $; $ d \mu $ is a Borel measure on $ \mathbf R ^ {n} $;
$$ G _ \alpha (x) = \ 2 ^ {(2 - n - \alpha ) / 2 } \pi ^ {-n / 2 } \left [ \Gamma \left ( { \frac \alpha {2} } \right ) \right ] ^ {-1} K _ {(n - \alpha ) / 2 } (| x |) | x | ^ {( \alpha - n) / 2 } , $$
$$ | x | = \left ( \sum _ {i = 1 } ^ { n } | x _ {i} ^ {2} | \right ) ^ {1/2} , $$
and $ K _ \nu (z) $ is the modified cylinder function (or Bessel function, cf. Cylinder functions) of the second kind of order $ \nu $ or the Macdonald function of order $ \nu $; $ G _ \alpha (x) $ is called a Bessel kernel.
The principal properties of the Bessel kernels $ G _ \alpha (x) $ are the same as those of the Riesz kernels (cf. Riesz potential), viz., they are positive, continuous for $ x \neq 0 $, can be composed
$$ \int\limits _ {\mathbf R ^ {n} } G _ \alpha (x - y) G _ \beta (y) dy = \ G _ {\alpha + \beta } (x), $$
but, unlike the Riesz potentials, Bessel potentials are applicable for all $ \alpha > 0 $, since
$$ G _ \alpha (x) \sim \ 2 ^ {(1 - n - \alpha ) / 2 } \pi ^ {(1 - n) / 2 } \left [ \Gamma \left ( { \frac \alpha {2} } \right ) \right ] ^ {-1} | x | ^ {( \alpha - n - 1) / 2 } e ^ {- | x | } , $$
as $ | x | \rightarrow \infty $.
If $ \alpha > 2m $, where $ m $ is a natural number, and the measure $ d \mu $ is absolutely continuous with square-integrable density $ f(y) \in L _ {2} ( \mathbf R ^ {2m} ) $, the Bessel potentials satisfy the identities:
$$ (1 - \Delta ) ^ {m} P _ \alpha (x) = \ P _ {\alpha - 2m } (x), $$
and
$$ (1 - \Delta ) ^ {m} P _ {2m} (x) = \ f (x), $$
where $ \Delta $ is the Laplace operator on $ \mathbf R ^ {2m} $. In other words, the function $ G _ {2m} (x) $ is a fundamental solution of the operator $ (1 - \Delta ) ^ {m} $.
References
[1] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
[2] | M. Aronszajn, K.T. Smith, "Theory of Bessel potentials I" Ann. Inst. Fourier (Grenoble) , 11 (1961) pp. 385–475 |
Comments
The function $ K _ \nu (z) $ is usually called the modified Bessel function of the third kind.
Bessel potential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_potential&oldid=46036