Bessel polynomials
Related to Bessel functions, [a2], the Bessel polynomials
satisfy
x ^ {2} y ^ {\prime \prime } + ( ax + b ) y _ {n} ^ \prime - n ( n + a - 1 ) y = 0
and are given by
y _ {n} ( x,a,b ) = \sum _ {k = 0 } ^ { n } { \frac{n! \Gamma ( n + k + a - 1 ) ( {x / b } ) ^ {k} }{k! ( n - k ) ! \Gamma ( n + a - 1 ) } } .
The ordinary Bessel polynomials are those found with a = b = 2 , [a2].
The moments associated with the Bessel polynomials satisfy
( n + a - 1 ) \mu _ {n} + b \mu _ {n - 1 } = 0, \quad n =0,1 \dots
and are given by \mu _ {n} = { {( - b ) ^ {n + 1 } } / {a ( a + 1 ) \dots ( a + n - 1 ) } } .
The weight equation is
x ^ {2} w ^ \prime + ( ( 2 - a ) x - b ) w = N ( x ) ,
where N ( x ) is any function with 0 moments. This equation has been solved when
N ( x ) = H ( x ) e ^ {- x ^ { {1 / 4 } } } { \mathop{\rm sn} } x ^ { {1 / 4 } } ,
where
H ( x ) = \left \{ \begin{array}{l} {1, \ x \geq 0, } \\ {0, \ x < 0, } \end{array} \right .
when b = 2 ( no restriction), a - 2 = 2 \alpha and \alpha > 6 ( {2 / \pi } ) ^ {4} , [a3]. The weight for the ordinary Bessel polynomials was found by S.S. Kim, K.H. Kwon and S.S. Han, [a1], after over 40 years of search.
Using the three-term recurrence relation
( n + a - 1 ) ( 2n + a - 2 ) y _ {n + 1 } ( x,a,b ) =
= \left [ ( 2n + a ) ( 2n + a - 2 ) \left ( { \frac{x}{b} } \right ) + ( a - 2 ) \right ] \cdot
\cdot ( 2n + a - 1 ) y _ {n} + n ( 2n + a ) y _ {n - 1 } ,
the norm square \int _ {0} ^ \infty {g _ {n} ( x,a,b ) ^ {2} w ( x ) } {dx } is easily calculated and equals { {( - b ) ^ {k + 1 } k ^ {( n ) } } / {( k + a + n _ {1} ) ^ {( k + n ) } } } , [a2], where x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) . Clearly, w generates a Krein space on [ 0, \infty ) .
References
[a1] | S.S. Kim, K.H. Kwon, S.S. Han, "Orthogonalizing weights of Tchebychev sets of polynomials" Bull. London Math. Soc. , 24 (1992) pp. 361–367 |
[a2] | H.L. Krall, O. Frink, "A new class of orthogonal polynomials: The Bessel polynomials" Trans. Amer. Math. Soc. , 63 (1949) pp. 100–115 |
[a3] | P. Maroni, "An integral representation for the Bessel form" J. Comp. Appl. Math. , 57 (1995) pp. 251–260 |
Bessel polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_polynomials&oldid=46035