Bessel interpolation formula
A formula which is defined as half the sum of the Gauss formula (cf. Gauss interpolation formula) for forward interpolation on the nodes
at the point x = x _ {0} + th :
\tag{1 } G _ {2n + 2 } (x _ {0} + th) = \ f _ {0} + f _ {1/2} ^ {1} t + f _ {0} ^ {2} \frac{t (t - 1) }{2!} + \dots +
+ f _ {1/2} ^ {2n + 1 } \frac{t (t ^ {2} - 1) \dots (t ^ {2} - n ^ {2} ) }{(2n + 1)! } ,
and the Gauss formula of the same order for backward interpolation with respect to the node x _ {1} = x _ {0} + h , i.e. with respect to the population of nodes
x _ {0} + h, x _ {0} ,\ x _ {0} + 2h,\ x _ {0} - h \dots x _ {0} + (n + 1) h,\ x _ {0} - nh:
\tag{2 } G _ {2n + 2 } (x _ {0} + th) = f _ {1} + f _ {1/2} ^ {1} (t - 1) + f _ {1} ^ {2} \frac{t (t - 1) }{2!} + \dots +
+ f _ {1/2} ^ {2n + 1 } \frac{t (t ^ {2} - 1) \dots [t ^ {2} - (n - 1) ^ {2} ] (t - n) (t - n - 1) }{(2n + 1)! } .
Putting
f _ {1/2} ^ {2k} = \ \frac{(f _ {0} ^ {2k} + f _ {1} ^ {2k} ) }{2} ,
Bessel's interpolation formula assumes the form ([1], [2]):
\tag{3 } B _ {2n + 2 } (x _ {0} + th) =
= \ f _ {1/2} + f _ {1/2} ^ {1} \left ( t - { \frac{1}{2} } \right ) + f _ {1/2} ^ {2} \frac{t (t - 1) }{2!} + \dots +
+ f _ {1/2} ^ {2n} \frac{t (t ^ {2} - 1) \dots [t ^ {2} - (n - 1) ^ {2} ] (t - n) }{(2n)!} +
+ f _ {1/2} ^ {2n + 1 } \frac{t (t ^ {2} - 1) \dots [t ^ {2} - (n - 1) ^ {2} ] (t - n) (t - 1/2) }{(2n + 1)! } .
Bessel's interpolation formula has certain advantages over Gauss' formulas (1), (2); in particular, if the interpolation is at the middle of the segment, i.e. at t = 1/2 , all coefficients at the differences of odd orders vanish. If the last term on the right-hand side of (3) is omitted, the polynomial B _ {2n + 1 } (x _ {0} + th) , which is not a proper interpolation polynomial (it coincides with f(x) only in the 2n nodes x _ {0} - (n - 1)h \dots x _ {0} + nh ), represents a better estimate of the residual term (cf. Interpolation formula) than the interpolation polynomial of the same degree. Thus, for instance, if x = x _ {0} + th \in (x _ {0} , x _ {1} ) , the estimate of the last term using the polynomial which is most frequently employed
B _ {3} (x _ {0} + th) = \ f _ {1/2} + f _ {1/2} ^ {1} \left ( t - { \frac{1}{2} } \right ) + f _ {1/2} ^ {2} \frac{t (t - 1) }{2} ,
written with respect to the nodes x _ {0} - h, x _ {0} , x _ {0} + h, x _ {0} + 2h , is almost 8 times better than that of the interpolation polynomial written with respect to the nodes x _ {0} - h, x _ {0} , x _ {0} + h or x _ {0} , x _ {0} + h, x _ {0} + 2h ([2]).
References
[1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , 1 , Pergamon (1973) (Translated from Russian) |
[2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
[a1] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1970) |
[a2] | F.B. Hildebrand, "Introduction to numerical analysis" , Addison-Wesley (1956) |
Bessel interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_interpolation_formula&oldid=46034