Namespaces
Variants
Actions

Acyclic orientation

From Encyclopedia of Mathematics
Jump to: navigation, search


An orientation (assignment of direction) of each edge of a graph such that no cycle in the graph is a cycle (consistently oriented) in the resulting directed graph (cf. Graph, oriented).

An acyclic orientation of a graph can be obtained from a proper colouring f by orienting each edge uv from u to v if f ( u ) < f ( v ) (cf. Graph colouring). Given an acyclic orientation D of a connected graph G that is not a forest (cf. also Graph, connectivity of a), let r ( D ) be the maximum over all cycles in G of \lceil {a / b } \rceil , where C has a forward edges and b backward edges in D . G.J. Minty [a7] proved that \chi ( G ) \leq 1 + r ( D ) and that this is best possible (equality holds for the acyclic orientation obtained above from an optimal colouring). Minty's theorem implies the related Gallai–Roy theorem ([a5], [a9], [a14]) that l ( D ) \geq \chi ( G ) - 1 where l ( D ) is the maximum length of a path in an orientation D of G (equality holds for the orientation defined above).

R.P. Stanley [a11] proved that the number of acyclic orientations of a graph G is the value at k = - 1 of the chromatic polynomial \chi ( G;k ) (computing this number is \# P -complete [a13]). More generally, suppose that D is an acyclic orientation of an n -vertex graph G and that f : {V ( G ) } \rightarrow {\{ 1 \dots k \} } is a k -colouring of G . One says that ( D,f ) is a compatible pair if uv \in E ( D ) implies f ( u ) \leq f ( v ) . Stanley proved that the number of compatible pairs is ( - 1 ) ^ {n} \chi ( G; - k ) . This relationship is an instance of combinatorial reciprocity. Stanley [a12] further generalized this to count acyclic orientations with j sinks. C. Greene [a6] proved that the acyclic orientations of a graph G are in one-to-one correspondence with the regions of an associated arrangement of hyperplanes; T. Zaslavsky [a15] has generalized this to acyclic orientations of signed graphs.

An edge in an acyclic orientation is dependent when reversing it would create a cycle. The acyclic orientation graph { \mathop{\rm AO} } ( G ) is the graph whose vertices are the acyclic orientations of G , with two vertices adjacent when they differ by the reversal of an edge; the degree of a vertex is its number of independent edges. Every acyclic orientation of a connected n -vertex graph G has at least n - 1 independent edges (deletion of dependent edges does not disconnect G ), and this is best possible (equality holds when the independent edges arise from a depth-first search tree). Thus, the minimum degree of { \mathop{\rm AO} } ( G ) is n - 1 . P.H. Edelman (see also [a10]) proved that the connectivity of { \mathop{\rm AO} } ( G ) is n - 1 .

When G has m edges, { \mathop{\rm AO} } ( G ) is isomorphic to an induced subgraph of the m -dimensional hypercube and is thus bipartite (cf. Graph, bipartite). It is conjectured that { \mathop{\rm AO} } ( G ) is Hamiltonian when its two partite sets have the same size. G. Pruesse and F. Ruskey [a8] proved that the Cartesian product { \mathop{\rm AO} } ( G ) \times K _ {2} is always Hamiltonian. These Hamiltonicity questions relate to the combinatorial Gray code problem (cf. Gray code) of listing the acyclic orientations by reversing one edge at a time.

When \chi ( G ) is less than the girth of G , the list of vertex degrees in { \mathop{\rm AO} } ( G ) includes all values from n - 1 up to the maximum degree [a4]. It is unknown whether this is true for all graphs. When \chi ( G ) < { \mathop{\rm girth} } ( G ) , there exist acyclic orientations in which every edge is independent.

A graph has an acyclic orientation in which every edge is independent if and only if it is a cover graph; this acyclic orientation is the cover relation of a partially ordered set (cf. Partial order). Recognition of cover graphs is {\mathcal N} {\mathcal P} -complete. The smallest triangle-free graph with chromatic number 4 (violating the condition \chi ( G ) < { \mathop{\rm girth} } ( G ) ) is the 11 -vertex Grötzsch graph, and it is not a cover graph.

Other types of acyclic orientations characterize important families of graphs. An acyclic orientation D of a simple graph is a transitive orientation if xy \in E ( D ) and yz \in E ( D ) together imply xz \in E ( D ) . The graphs having transitive orientations are the comparability graphs of partially ordered sets. A graph is perfectly orderable if it has a vertex ordering L such that greedily colouring the vertices of any induced subgraph H in the order specified by L uses only \omega ( H ) colours, where \omega ( H ) is the size of the largest clique in H . V. Chvátal [a3] proved that G is perfectly orderable if and only if it has an acyclic orientation having no induced 4 -vertex path with both end-edges oriented outward.

Let c ( G ) be the worst-case number of edges that must be probed by an algorithm that finds an unknown acyclic orientation of G . A graph is exhaustive if c ( G ) = | {E ( G ) } | . Graphs having an acyclic orientation in which every edge is independent are exhaustive. For bounds on c ( G ) in terms of the independence number of G see [a1]. N. Alon and Zs. Tuza [a2] proved that for the random graph with constant edge probability p , almost surely c ( G ) = \Theta ( n { \mathop{\rm log} } n ) . Both papers also study exhaustive graphs.

Acyclic orientations have computational applications in percolation, network reliability, neural networks, parallel sorting, scheduling, etc.

References

[a1] M. Aigner, E. Triesch, Zs. Tuza, "Searching for acyclic orientations of graphs" Discrete Math. , 144 (1995) pp. 3–10 (Combinatorics of Ordered Sets (Oberwolfach, 1991))
[a2] N. Alon, Zs. Tuza, "The acyclic orientation game on random graphs" Random Structures Algorithms , 6 (1995) pp. 261–268 (Proc. Sixth Internat. Sem. Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, (Random Graphs '93; Poznań, 1993))
[a3] V. Chvátal, "Perfectly ordered graphs" , Topics on perfect graphs , North-Holland math. stud. , 88 , North-Holland (1984) pp. 63–65
[a4] D.C. Fisher, K. Fraughnaugh, L. Langley, D.B. West, "The number of dependent edges in an acyclic orientation" J. Combin. Th. Appl. (to appear)
[a5] T. Gallai, "On directed paths and circuits" P. Erdős (ed.) G. Katona (ed.) , Theory of Graphs (Proc. Tihany 1966) , Acad. Press (1968) pp. 115–118
[a6] C. Greene, "Acyclic orientations" M. Aigner (ed.) , Higher combinatorics , Proc. NATO Adv. Study Inst. (1976) , Reidel (1977) pp. 65–68
[a7] G.J. Minty, "A theorem on n-coloring the points of a linear graph" Amer. Math. Monthly , 69 (1962) pp. 623–624
[a8] G. Pruesse, F. Ruskey, "The prism of the acyclic orientation graph is Hamiltonian" Electron. J. Combin. , 2 (1995) (Research Paper 5, approx. 6 pp. (electronic))
[a9] B. Roy, "Nombre chromatique et plus longs chemins d'un graphe" Rev. Française Automat. Informat. Recherche Opérationelle Ser. Rouge , 1 (1967) pp. 127–132
[a10] C.D. Savage, C.-Q. Zhang, "A note on the connectivity of acyclic orientation graphs" Discrete Math. (to appear)
[a11] R.P. Stanley, "Acyclic orientations of graphs" Discrete Math. , 5 (1973) pp. 171–178
[a12] R.P. Stanley, "A symmetric function generalization of the chromatic polynomial of a graph" Adv. Math. , 111 (1995) pp. 166–194
[a13] D.L. Vertigan, D.J.A. Welsh, "The computational complexity of the Tutte plane: the bipartite case" Combin. Probab. Comput. , 1 (1992) pp. 181–187
[a14] L.M. Vitaver, "Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix" Dokl. Akad. Nauk. SSSR , 147 (1962) pp. 758–759 (In Russian)
[a15] T. Zaslavsky, "Orientation of signed graphs" European J. Combin. , 12 (1991) pp. 361–375
How to Cite This Entry:
Acyclic orientation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Acyclic_orientation&oldid=53247
This article was adapted from an original article by D. West (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article